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ABSTRACT

In this study various through and part-through crack problems in

plates and shells are considered. The line-spring model of Rice and

Levy is generalized to the skew-symmetric case to solve surface crack

problems involving mixed-mode, coplanar crack growth. New compliance

functions are introduced which are valid for crack depth to thickness

ratios at least up to .95. This includes expressions for tension and

bending originally used by the model for symmetric loading as well as

new expressions for in-plane shear, out-of-plane shear, and twisting

for the skew-symmetric case. Transverse shear deformation is taken

into account in the plate and shell theories and this effect is shown

to be important in comparing stress intensity factors obtained from

the plate theory with three-dimensional surface crack solutions.

Stress intensity factor results for cylinders obtained by the line-

spring model also compare .___1 with the ,L_^^ _: .... _1 _^1..+;

By using the line-spring approach, for a given crack length to

thickness ratio, stress intensity factors can be obtained for the

through crack and for part-through cracks of any crack front shape,

without need for recalculating integrals that take up the bulk of the

computer time. Therefore, parameter studies involving crack length,

crack depth, shell type, and shell curvature are made in some detail.

The results presented are believed to be useful in brittle fracture,

and more importantly, in fatigue crack propagation studies.

The line-spring

in plate bending.

model is also used to solve the contact problem

Investigations into stress intensity factors for
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crack growth in the length direction (as opposed to growth in the

thickness direction), are also made by using the model. The endpoint

behavior of the results given by the line-spring model is considered

in detail.

In addition to part-through crack problems, some results for

single and double through cracks are presented. The thin plate

bending limit of Reissner's theory and its relationship to the

classical theory are reconsidered.

All problems considered in this study are of the mixed boundary

value type and are reduced to strongly singular integral equations

which make use of the finite-part integrals of Hadamard. These

equations are obtained by using displacement quantities as the

unknowns, rather than the more commonly used displacement derivatives

which lead to integral equations with Cauchy singularities. The

equations are solved numerically in a manner that is believed to be

very efficient.
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CHAPTER 1

Introduction, Literature Survey and Overview

1.1 Introduction

Pressure vessels, pipelines, containers, ship hulls, etc. are all

shell-like structures which can fail by fracture. The designers of

these components must take this into account as such failures are

often catastrophic, endangering lives and the environment. The

fracture process typically starts with a small material defect or weld

imperfection that grows in fatigue which is driven by mechanical or

environmental conditions. Eventually the flaw may be charactcrized as

a macroscopic surface crack. This surface or part-through crack then

continues its growth through the thickness, leading to failure by

leaking or to unstable fracture.

In the discipline of fracture mechanics one usually assumes an

initial flaw configuration, and then seeks to obtain certain fracture

\

parameters that are believed to govern the tendency of the crack to

grow. In the case of brittle fractures and more importantly,

fractures by fatigue, the stress intensity factor (SIF) is the most

commonly used parameter.

The analysis of through cracks in thin structures was first

performed within the theory of plates and shells, which allows for a

straightforward analytical solution for practical geometries such as

cylinders, spheres, and pipe elbows. The problem is of the mixed

boundary value type and is reduced to a system of dual integral

equations or a system of singular integral equations (SIE), most often

3



the latter. It is usually assumed that the curvatures are constant

and the shell has constant thickness, the material is homogeneous,

isotropic, or perhaps specially orthotropic, and behaves in a linear

elastic manner. Three-dimensional effects due to the interaction

between the free surface and the crack plane are neglected. Benthem

[1] has investigated these effects for a crack in a half space. To

date no research has included this surface layer behavior in a problem

with a practical geometry.

The surface crack has a three-dimensional geometry which seems

accessible only to either analytical or numerical techniques from the

theory of elasticity. Rice in 1972 [2,3] introduced the so-called

line-spring ,model (LSM) which transformed the part-through crack into

a through crack problem by making use of the edge-cracked strip plane

strain solution. This model has been shown to give very good results

in spite of its simplicity. Therefore, within the limitations of this

model, both through and part-through crack problems can be solved with

the same plate or shell theory formulation.

It is important to point out that for a through crack the primary

interest is in the behavior of the stress state at and near the crack

tip. Whereas, for surface cracks the most important point is the

deepest penetration point of the crack front. The model in its

original form is limited to symmetric (mode 1) fracture, and cannot

predict behavior at the endpoint where the crack front meets the free

surface (again neglecting the free surface effect).

4



1.2 Literature Survey

The problem of determining

infinitely

half-length

1957. In

the singular stress field in an

large plate of thickness h, containing a finite crack of

a, subjected to tension was studied by Williams [4] in

a 1960 paper [5] Williams also investigated the problem of

plate bending by using the classical plate theory. Although in the

bending problem the stress singularity was observed to be the same as

in the plane elasticity case, (namely r-l/2), the angular variation of

the stresses around the crack tip was found to be different. Shortly

after this paper was published, Knowles and Wang [6] showed that this

discrepancy could be removed if the 6th order Reissner plate theory

[7,8], which includes transverse shear deformation, was used. This

theory allows for the satisfaction of all three crack surface boundary

conditions (Mxy--O, Vx--O, Nxy=O), instead of combining these three

conditions into two as did the previous theory by use of the Kirchhoff
_M

+ --_ =0). The work of Knowies and Wang was
condition, .(Nxy--O, Vx 8y

later made more complete by Hartranft and Sih [9] and by Wang [10].

In these papers the SIF solution is given for various crack length to

plate thickness ratios, i.e. (a/h).

In the paper by Knowles and Wang it was observed that Reissner's

theory approaches classical theory in the limit as h/a*O, or as the

plate gets thin. This limit is well behaved except at the crack tip

where boundary layer behavior in the SIF is indicated by graphical

solutions [9,10]. This _discontinuous _ behavior was discussed by

Civelek and Erdogan [11] with the aid of more complete and more

precise numerical results, but not proven. Also it was pointed out by

5



Hartranft [12] that this limit should not be used. For more

discussion of this problem see Sih [13].

In all of the preceeding papers the solution was limited to

symmetric (mode 1) loading, which includes tension and bending. Wang

in 1970 [14] was the first to consider twisting, again with Reissner's

plate theory. The asymptotic stress field was shown to be compatible

elasticity, therefore mode 2 and 3 SIFs had the same

definition. This problem is not approachable by the

theory for the same reasons that apply to plate bending.

The results of Wang [14] were extended by Delale and Erdogan [15] to

include specially orthotropic materials.

The first analysis of cracks in shells was presented by Folias in

1965 for a cracked sphere [16,17] and for an axially cracked cylinder

[18]. The circumferentially cracked cylinder was investigated in 1967

[19]. The results in these papers are asymptotic in nature for short

cracks. A shallow shell theory was also used which linearlzes the

governing equations. The full curvature problem is non-linear and has

not yet been solved by analytical techniques although Sanders [20,21]

has used a thin shell theory which is linear yet valid for a complete

cylinder to obtain energy release rates (not SIFs) for long cracks.

The validity of shallow shell analysis can be summarized as follows:

for a given shell radius, the smaller the thickness h, the more

appropriate the shell assumption; the shorter the crack length 2a, the

more appropriate the shallow shell assumption.

In the late 1960's Erdogan and K_bler [22] and Copley and Sanders

[23] provided a more complete solution to the problems studied by

6

with 2-D

elasticity

classical



Folias.

employed,

integral equations are

accuracy).

Although the same approximate, shallow shell equations are

the numerical techniques for the solution of the singular

exact (to any reasonable specified degree of

The major shortcoming of these early shell solutions, including

the work of Sanders [20-21], was the neglect of transverse shear

deformation as in the early plate bending problem. In shells, since

extension and bending are coupled, the elasticity concept of the SIF

cannot be used with these 8th order theories without redefinition. As

bending becomes more of a factor in the geometry and loading

considered, the results become less accurate. Also the contribution

from extension is affected. It was Sih and Hagendorf [24] in 1974 who

first solved cracked shell problems with transverse shear accounted

for; see also a second paper by Sih [25]. Later papers, which used

the shallow shell governing equations due to Naghdi [26], provided

more exact and extensive results for the __xia!ly cracked cylinder, see

Krenk [27], and for the circumferentially cracked cylinder, see Delale

and Erdogan [28]. It was shown in these papers that the asymptotic

stress field obtained is compatible with the solution from the theory

of elastic fracture mechanics; therefore standard fracture parameters

such as the SIF could be used. The skew-symmetric shell problem was

studied by Delale [29] and it was shown that the mode 2 and 3 stress

intensity factors also have the same elasticity definition. Therefore

it appears that

cracks in plates and shells

transverse shear deformation,

the simplest shell theory that may be used to study

to obtain SIFs is one that includes

[7,8,26]. In 1983 Yashi and Erdogan

7



[30] solved the shallow shell problem for a crack arbitrarily oriented

with respect to a principal line of curvature. They used the same

formulation as was used by Delale and Erdogan [28], but the analysis

involved ten unknowns instead of two [28] or three [29] because of the

loss of symmetry.

In all the previous shell solutions which included transverse

shear deformation, the assumption of shallowness has been applied.

Barsoum, Loomis, and Stewart [31] were the first to publish results to

the complete through crack problem in a cylinder by using finite

elements which took into account transverseshear deformation. There

is good agreement between these results and the results from the

shallow shell theories [22,27], even for relatively long cracks. More

recent finite element calculations by Ehlers [32] disagree with the

work of Barsoum, et. al. However these calculations are limited to

a/Ry.5, which for a tshallow shell w, is a very long crack. More work

must be done to determine the error due to the shallow shell

assumption for increasing a/R. This theory may be regarded as an

asymptotic solution for small a/R.

The study of surface cracks in plates and shells has a more

detailed history involving three-dimensional numerical techniques

because it is both more important and more difficult. In addition to

the finite element method [33,34], there is the alternating method

[35,36], the boundary integral equation method [37], the finite

element alternating method [38-40], the method of weight functions

[41,42], and the body force method [43]. The standard solution for

plates is that of Newman and Raju [33]. The more recent work of

8



Isida, Noyuchi, and Yoshida [43] have verified these results and

perhaps slightly improved upon them. For reviews of the various

solutions and methods see [44-46].

The previous studies for surface cracks deal only with mode 1

loading, which is the most important mode for crack extension.

However there are situations that involve twisting and shearing that

cannot be neglected. For instance, depending on the geometry, when

these loadings are primary, a secondary mode 1 contribution can

result. The body force method [47] has recently been applied to an

inclined surface crack in a half space which involved all modes of

fracture. This problem has not received much attention in the

literature, because it is ]ess important than mode 1, and also more

expensive to solve.

As mentioned previously the line-spring model allows for the

solution of the 3-D surface crack problem within the 2-D theory of

v_es and ..Is ._o _.._ _v_

considerably. Therefore more extensive parameter studies can be made

once the model has been verified by the more accurate three-

dimensional methods.

Since the introduction of the model in 1972 [2], there have been

numerous papers suggesting improvements and modifications. As with

the through crack problem the use of a Reissner plate theory has

improved the results [48,49], especially for realistic crack lengths

on the order of a/h=l. The classical theory gives good results for

a/h_2, and in the ]imit as a/h_® the two theories are the same (for

the LS_). The initial suggestions of Rice [3] concerning the use of

9



the model to study plasticity effects have been advanced by Parks [50]

and more recently by Miyoshi, Shiratori, and Yoshida [51] who used the

model with thick shell finite elements to predict crack growth. Other

researchers [49,52] have devised techniques that implement a numerical

plate or shell solution instead of the original singular integral

equation procedure. This is an advantage in shell analysis, because

to date, the analytical techniques are limited to the shallow shell

theory which is not valid for long cracks. However the long surface

crack is not a practical geometry, and if needed, can usually be

approximated by a plane strain solution.

Yang in a recent paper [53] has considered crack surface loading

in the form of a polynomial to solve problems of residual or thermal

stress. The original LSM used only the constant and linear terms

associated with tension and bending plate variables respectively.

Theocaris and Wu [54,55] have suggested a way to determine the SIF at

the corner of a surface crack. This method seems inappropriate since

they have used the classical theory of plate bending which is unable

to predict this value for the much simpler through crack case. The

finite width plate has been solved by Boduroglu and Erdogan [56,57].

All previous LSM solutions were for an _infinitely large r plate.

Erdogan and Aksel have considered the cavity in a plate [58] and Wu

and Erdogan have extended the LS_ to an orthotropic plate [59].

Delale and Erdogan [60] have used the model with a shallow shell

formulation to predict SIFs for surface cracks in cylinders for axial,

circumferential, inner and outer cracks.

10



1.3 Overview

The primary interests in this study are to extend the LSU to the

mixed-mode case and to use the model to approximate crack growth

tendencies in the length direction as opposed to the depth direction

for which it already applies. In Chapter 2 the line-spring model for

mixed-mode loading conditions is derived. Furthermore, the mode 1

compliance relations [61-63,48] are improved by using the recent edge-

cracked strip solution of Kaya [64]. The curves are fit to data for

O_(Lo/h)_.95 and may be used for the entire range of values as the

curves have the proper asymptotic behavior for (Lo/h)_l [65]. Also

the necessary solutions for modes 2 and 3 are obtained.

In Chapter 3 some unsolved through crack problems in plates are

considered and the thin plate limit for Reissner's theory is

investigated to better understand the validity of the classical plate

theory when applied to the LSM. In Chapter 4 the LSM, with and

without including the transverse _,,_,-L^_-_,_^_v,,_,l+_^_, is _v-r_,_ to

finite element surface crack solutions. SIF comparisons are also made

for the corner of a semi-elliptical surface crack. The contact

bending or crack closure problem, a difficult unsolved 3-D problem, is

solved in a straightforward manner. Also extensive SIF results _re

given for both rectangular and semi--elliptical crack shapes under all

five loading conditions, i.e. tension, bending, out-of-plane shear,

in-plane shear, and twisting.

Crack problems in shells are considered in Chapters 5 and 6.

Comparisons of surface crack solutions obtained with the model are

made with 3-D solutions from the literature [34,40]. Various unsolved

11



through and part-through problems are considered and the effect of

curvature is studied for both the symmetric and the skew-symmetric

cases.

All integral equations are derived with displacement quantities

as unknowns. The resulting equations are, therefore, strongly

singular and make use of the finite-part integrals of Radaaard [66],

see also Kaya [67]. Finite-part integrals as used in this study are

defined in Appendix B. The numerical techniques used to solve these

equations are presented in Appendix E.

The definition of stress intensity factors (SIFs) that are

referred to throughout this dissertation is given in Appendix G.

12



CHAPTER2

The Line-Spring Model

2.1 Introduction.

A surface or part-through crack in a pipe, pressure vessel, or

any other shell-like structure is a common and important flaw geometry

to analyze, see Fig. 2.1. Because the elasticity problem is three-

dimensional, many solutions involve expensive numerical techniques

such as the Finite Element Method [33,34], the Alternating Method

[35,36], the Boundary Integral Method [37], the finite element

alternating method [38-40], the method of weight functions [41,42],

and the body force method [43]. This problem has also been formulated

analytically for a flat plate or strip in terms of two-dimensional

integral equations, but has not been solved [67].

The line-spring model, proposed by Rice and Levy [2], and

incorporated in a plate or shell theory that allows for transverse

shear deformation [7,8,26], competes with these methods because of its

simplicity and surprising accuracy. See Figs. 4.1-4, 6.1,2, for

comparisons with the Finite Element Method and for the effect of

transverse shear for various geometries in mode 1 loading.

Briefly, the model allows one to use a plate or shell theory to

formulate the problem by removing the "net ligament _, and replacing it

by unknown, thickness averaged stress resultants which are treated as

crack surface loads in a through crack problem. See Fig. 2.2 for a

mode 1 illustration of this process. This reduces by one dimension

the complexity of the analysis. The force resultant and displacement

13



variables used in both

defined in Figs. 2.3a-c.

included in the figures.

{F)T= { FI'F2'F3'F4'F5 } '

= { Nxx,Mxx,Vx,Nxy,Mxy } ,

h2 h 2

÷

6. = u. - u. i=1,...,5
1 1 l

plates and shells are given below and are

Also the corresponding fracture modes are

(2.1)

(2.2)

(2.3)

, (2.4)

(2.5)

The two-dimensional _ormu]ation of through and part-through crack

problems in plates and shells as a mixed boundary value problem makes

use of the superposition illustrated in Fig. 2.4. With regard to

these figures, _. are the constant applied loads at WinfinityW or away
1

from the crack region and N and M are unknown stress resultants which

are due to the net ligament of the part-through crack. In the case of

a through crack, the crack surfaces are stress-free so N=M=O. For the

solution of the mode 1 perturbation problem in a plate shown in Fig.

2.4, the following singular integral equations must be solved:

1  bu_ n
a (t_y)2 dt =-(_xx-Nxx) , (2.6)

1 Ib7(1_.2) _b _ at N z22(y,t)p(t) dt = --(_xx-Mxx) (2.7)
2x a (t-y) 2 + a

For the derivation of Eqns. 2.6,7 and for the expression for K22(Y,t),

14



7, and v see Chapter 3. Also see Appendix B for the interpretation of

the strongly singular integrals appearing in these equations. The

unknowns in the equations are N, M, u, and p. Since there are four

unknowns and only two equations more information is needed. In the

derivation that follows N and M are linearly related to u and p in the

manner of a spring. After substitution of these relationships into

Eqns. 2.6,7, u and _ can be numerically determined from which all

quantities of interest can be calculated.

2.2 Derivation of the Compliance Relationships.

The line spring model is based on two assumptions. The first,

previously stated, and illustrated in Fig. 2.2, involves replacing the

net ligament (in which the state of stress is two-dimensional), by

resultant forces which are functions of y only. The second assumption

is that the stress intensity factors along the crack front may be

obtained from these _" forces °_ .t ....resux_ant a_ _.oug_ the stress state were

one of plane strain. The restriction at the ends of the crack and the

crack front curvature, both act against this assumption. Therefore

the model is most accurate in the center of the crack and improves ;_s

the crack gets longer for a given _A_ck depth, i.e. as plane strain

conditions are approached.

In order to make use of this analogy, the plane strain stress

intensity factor solution for an edge-cracked strip must be available

for the five possible loading conditions in a shell on a given

surface, see Eqns. 2.2,3 and Fig. 2.3a-c. These solutions are

presented in Appendix C along with a curve fit in the form,

15



k K n.. . "l

gi(_) -- __a _ ___ _ 1 _ Cik_k ,
a._ o._ (1-(1 x k=l

1 i

where

depth

(2.8)

L is the crack depth, and the variable _ is the ratio of the

L to the strip thickness h, i.e. _=L/h. From Fig. 2.3a-c, when

i=l

is 3/2 when i=1,2 (mode I), and 1/2 when i=3,4,5 (modes 2,3).

constants n.i and Cik are given in Appendix C. From this follows

K1 : xJ-x_h [ alg I + a2g 2 ] ,

or 2, j=l, when i=3, j=2 and when i=4 or 5, j=3. The exponent k

The

K2 = xj-_-h_ho3g 3 ,

K3 = _._'_h [ a4g 4 + a5g 5 ]

In these expressions ai=ai(Y )

(2.0)

(2. i0)

(2.11)

represents the net ligament stresses

according to the relations given in Fig. 2.3.

The derivation

fracture along the

generalize Irwin's

rate,

_ (U-V) = ¢ = E " K1 + K2 + _ K3 '

Note that _=_(y).

is based on expressing the energy available for

crack front in two different ways. First we

relation [68,60] for the potential energy release

(2.12)

where U is the work done by external loads and V is the strain energy.

The use of the relation,

G2 -

involves

This

(I-v2)K 2

E
(2.13)

the assumption that the crack will grow in its own plane.

would apply to structures that are made of composite materials

16



that may have a weak cleavage plane [70]. If the crack deviates from

a straight path, G2 in Eqn. 2.13 is not the energy dissipated by

incremental crack growth, and therefore Eqn. 2.12 would not be valid.

With the assumption of coplanar crack growth, Eqns. 2.9-11 are

substituted into Eqn. 2.12 to obtain,

= -- olg 1 + 2alO2glg 2 + a2g 2 + a3g 3 +

Next

]oad! conditions. The changes

Fig. 2.5 for the notation used),

gU = F.AS. ,
1 1

1 ½ 1gV = _ Fi(Si+A6i ) - Fi6 i = _ Fi6i ,

where F. and 5. are defined in Eqns. 2.1-5.
1 1

After writing

05.
h6.- 1AL

1 8L

due to the force Fi,

1 [ ,, ]}l----ua494 + 204059495 + a5g5

consider the crack to extend from L to L+AL under "fixed

in U and V are as follows (refer to

86.

d (U-V) = 1 Fi 1

The sum of all five load_ngs is,

(u-v) = _ Fi gg

Define the following matrices,

17

(2. is)

(2.16)

(2.17)

(2.18)

(2.19)

h 2 h
-g 52,-. _ 63,54,-g 55 ) , (2.20)



[G] =

2

gl g1_2 0 0 0

_Ig2 _2 02 0 0
102 1 0

o o g4 g:s
0 0 0 _ g4g 5 l-u g5

(2.21)

Now equate Eqn. 2.14 to 2.19 using Eqns. 2.3,20,21 for substitution to

obtain,

_2{a)T 1 {o}T0 <6')h [c]<o>= _ h _ , (2.22)

or

s <6')= 2(1-v2)E z [c]<a) (2.23)

Integrate and observe that a _ o(L),

L 0

Z [G] dl } (a} + < 6 }{L= 0 •
(2.24)

Next define

[B] = [aij ] = 1n [, re] = [g] d{ , { = L/h ,
0

(2.25)

where

aij = f_gig j d{ , i,j=1,2,3 (2.26)

and

r_1
/ df i,j:-4,5 (2.27)

aiJ = l-u "ogigJ '

Because of the form chosen for the functions gi (see Eqn. 2.8), aij

are determined numerically. When the matrix [B] is substituted into

Eqn. 2.24 and the equation is solved for the stresses, the result is

18



{o} - , (2.28)

where

[B] -I=

E [B]-1{6,)

2h (1-v 2)

 22/A1-.12/AI 0 0 0

-a120/h1 a 11/0A1 0 0 0
I0/a33 0 0

0 0 a55/A 2 -a45/A2

0 0 O -a45/A 2 a44/A 2

, (2.29)

and

2 A2 2 (2 30)A1 = alla22- al2 ' = a44a55 - a45

Eqn. 2.28 has the information that is needed for substitution

into integral equations of the form of Eqns. 2.6,7. First it must be

non-dimensionalized. This is done according to the definitions in

Appendix A. Since all problems in this dissertation are either

symmetric or skew-symmetric we have 5i = 2u i, i.e. lu+[= lu-[= ui-

The final non-dimensional result is:

oI = 711Ul + 712u2 ,

02 = 61721u I + 722u2 ] ,

5
03- 8(l+v) 733u3 '

¢Z4 = 744u4 ÷ 745u 5 ,

05 = 61754u 4 + 755u5 ] , (2.31)

u I = (l-v2)[ allO 1 + a12o 2 ] ,

u2 : 6(I-u2)[ al2a I + a2202 ] ,
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3 (i_v2)
u3 = _ a33°3

u4 = (I-u2)[ a44o 4 ÷ a45o 5 ] ,

u5 = 6(1-v2)[ a4504 + a55o 5 ] , (2.32)

where

1 a22 -I a12

711- l_u2 A1 712 6(l_u 2) A1

721 = 712

1 all

, 722- 36(i_u 2) A1 '

16 1

733 - 15(l-u) a33 '

1 a55 -I a45

744 - l_v2 A2 745 6(l_u 2) A2

1 a44 (2.33)

754 = 745 , 755 - 36(1_u2) A2

If these equations are now substituted into Eqns. 2.6,7, the

result is,

1 _b _u_(t_ dt 712 p = -_ = -_1
2--_a (t-y) 2 - 711u - xx '

(2.34)

a (t-y)
I _bdt + _ K22(Y,t)p(t ) dt

a

The

721 u 722_ -_ ®..... _x a2/8

compliance coefficients 7i j

(2.35)

are indirectly /unctions of y
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through the variable { which is the non-dimensional crack depth. Note

that for a through crack the 7ij are zero. In this case the equations

uncouple and respectively correspond to tension and bending loadings.

Since the model is most accurate in the central portion of the

crack, it is best applied to problems where failure occurs when the

surface crack grows through the thickness leading either to leaking or

to the development of a through crack which then grows in length to

critical size. Because of the plane strain assumption, the model

becomes less applicable near the ends of the crack. Although the

model unexpectedly gives reasonable results here (see Figs. 4.1-4 and

6.1,2 where curves are drawn up to y/a = .98), the use of the solution

in this region for anything other than general trends is not

justified. Even though the solution at the ends is not used, the

behavior of the solution here plays a role in the convergence of the

method over the entire range, and therefore should be examined.

2.3 Endpoint behavior.

In the case of the through crack it is known that the behavior of

the displacement quantities are of the form (see Appendix D),

ui(t ) = fi(t)(1-t2)l/2 , _ (2.36)

where the square root is referred to as the weight function (of the

integral equation) and fi(t) is a simple function which can be

represented by a polynomial that is easily obtained numerically. Note

that the crack domain has been normalized to (-1,1). If ui(t ) were

determined without extracting the endpoint behavior given by the

21



weight function, convergence of ui(t ) towards the ends (i.e. -I,I)

would be unacceptably slow. Also in the through crack problem the

stress intensity factors are proportional to f(-l) and f(+l), and

therefore can only be found if the weight is extracted. The addition

of the line-spring terms into the integral equation has an effect on

this asymptotic analysis only if the net ligament stresses are

unbounded, which is unreasonable. If these stresses are assumed to be

finite at the ends, Eqns. 2.32 and 2.36 show that,

u 1 = (l-v2)[ alla 1 + a12a2 ] = fl(t)(1-t2)l/2 ,

u 2 = 6(1-v2)[ a12o 1 + a2202 ] = f2(t)(1-t2) 1/2

3 (l_v2) : (l_t2) 1/2u3 = _ a33a3 f3 (t) ,

u4 = (l-v2)[ a44a 4 + a45a 5 ] = f4(t)(l-t2) 1/2 ,

u 5 = 6(I-v2)[ a45o 4 + aS5a 5 ] = f5(t)(1-t2) 1/2 (2.37)

For finite, non-zero net ligament stresses, aij in Eqns. 2.32 must

carry the square root behavior as t approaches -1 and 1. Recall that

a.. are functions of t through the crack shape variable {. If the
ij

crack depth of the surface crack is non-zero at the ends as in the

case of a rectangular crack, a.. will be constant at She endpoints.
ij

The solution will then require a. to be zero at the endpoints, a
i

condition that does not seem reasonable. If the crack depth, { is

zero at the ends, the behavior of a.. will depend on how _ goes to
ij

zero. For small { we may write
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N

~ (2.38)gi - cij '

from which we obtain from Eqns. 2.26,27,

2 2 2_ c10c11_3=11 = 2 c10{ * --3 + 0({4) '

, c10c20{2 lr {3 0({4) ,a12 = a21 = _ + _ [ c20cli + ci0c21] +

, c220_2 2,a22 :_ + --_ c20c21 _s + 0({4) ,

, 2 4 0({5),a33 = _ c31{ +

• 2 2 2, c40c41_3(1-u)a44 = _ c40{ + --_ + 0({ 4 ) ,

= " + " ÷(l-e)a45 (1-v)a54 = _ c40c50 {2 3 [ c40c51 c50c41]{ 3+ 0({4),

• 2 2 2, + 0({4) , (2.39)(1-v)a55 = _ c50_ * --_ CsoC51_3

where from Eqn 2.8 the c.. in terms of the C.. are,
1J ij

Cio = Cio ,

Cil = Cil + XCio (2.40)

More terms in this series are given in Appendix F.

In order for Eqn. 2.37 to be true for bounded, non-zero stresses,

Eqn. 2.39 (except for a33 ) suggest that:

a. ~ (1-t2) 1/2
ij

or

{2~ (1_t2)1/2

Therefore if the crack shape is chosen in the form

(2.41)

(2.42)
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= _0(1_t2) 1/4 , (2.43)

convergence will be good for Itl _ 1. Rice [2] made this point. Any

other crack shape will impose either unbounded or zero endpoint

behavior on the net ligament stresses and the solution will not

converge at the endpoints in a satisfactory manner. If one considers

the semi-ellipse for example, a i will be of the order (l-t2) -1/2 as

Itl approaches 1.

There is one exception. In the case of a33 in Eqn. 2.37 the

stress a 3 will be zero. This should be expected because the assumed

form of the out-of-plane shear stress is parabolic, i.e. zero at the

surface of the shell. Therefore as the crack depth goes to zero so

does e 3.

It should be pointed out that regardless of what form of the

crack is chosen, satisfactory convergence can be obtained in the

central portion where the line-spring model is most applicable. The

results in this dissertation were thus obtained for the semi-ellipse.

But if a solution is desired for (-1,1), it is necessary to have the

crack shape at the ends asymptotically behave like Eqn. 2.43. A

procedure Lo get this function utilizes a simple expansion about zero

and for some typical shapes is as follows. Let

: _0 (l-t2) n (2.44)

be the desired shape. Note that a rectangle is given by n=O, and a

semi-ellipse results from n=l/2. Next we write

= _0 (1-t2)n _ _0 (1-t2)l/4g(t) ' (2.45)
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where

M

g(t) -_ (l-t2) n-l/4 ~- i_oSit 2i (2.46)

M is

given

follows,

a0 = 1

a 1 = -(n-l/4)

(n-l/4) [(n-1/4)-l]
a2 = 2!

(n-l/4) [(n-1/4)-l] [(n-1/4)-2]
a3 = - 3!

chosen so that an adequate representation of the crack front is

over most of the domain, and the coefficients ai, are given as

, etc. (2.47)

The convergence of Eqn. 2.46 is demonstrated for n=O and n=I/2 in

tables 2.1,2, respectively. Stress intensity factor results of Eqns.

2.6,7 for the crack shapes in these tables are given in tables 2.3-6.

The stress intensity factors in Eqns. 2.9-11 are normalized with

respect to the value of K from Eqn. 2.8 for _ in the center of the

crack and for the corresponding loading, see section C.4 of Appendix

C. This technique however, is of limited use.

Semi-elliptic crack shapes are chosen for most mode 1 analysis

because of their general resemblance to surface cracks. Most

experiments however show that cracks grown by fatigue tend to have a

blunter shape at the ends, see for example [55,71]. Note that the 1/4

power represents this better than 1/2.
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One further point to make before concluding this chapter is _hat

for small { the inverse of the B matrix (Eqn. 2.29) is singular and

the asymptotic behavior of relations 2.32 is of the form,

7i j = (constant) {-4 + 0({-3) (2.48)

The constants are defined in Appendix F. It would seem that the

contribution of the stress terms (Eqn. 2.31) for the case of a semi-

ellipse where u~{~(1-t2) 1/2 would be unbounded and to the -3/2 power

rather than -1/2 as predicted by Eqn. 2.37. Rowever when the terms of

Eqn. 2.31 are combined, the two leading order terms cancel and we are

left with the singular nature predicted by Eqn. 2.37, see Appendix F.
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Table 2.1 Crack profiles approximating a constant

depth using Eqns. 2.46,47•

Rectangular Profile (_ = .6)

t
.0

.I

.2

.3

.4

.5

.6

.7

.8

.9
.95

.98

M 1 3 5 I0 20 exact

•6000

.5985
5939
5860
5744
5584
5367
5070
4648

.3961

.3353

.2677

6OOO

6OOO
6OOO
6OOO
5997
5987
5958
5882
5689
5170

4536
3705

6000

6OOO
6OOO
6OOO
6OOO
5999
5996
5980
5906

.5579
•5037
•4200

.6000
6000
6000
6000
6000
6000
6000
6000
5993
5900
5585

.4862

600O
6000
6000
60O0
6O00
6000
60OO
6000
6000
5992
5898
5440

6000
6000
6000
6000
6000
6000
6000
6000

• 6000
• 6000
• 6000
• 6000

Table 2.2 Crack profiles approximating a semi-

ellipse using Eqns. 2.46,47.

Semi-Elliptic profile, (_ = .6(I-t2) I/2)

M 1 3 5 10 20 exact

t
.0 .6000 .60OO
.1 .5985 .5970
.2 .5939 .5879
.3 .5860 .5724
.4 .5744 .5501
.5 .5584 .5202
.6 .5367 .4818
.7 .5070 .4335
.8 .4648 .3726
.9 .3961 .2915
.95 .3353 .2304
.98 .2677 .1802

.6000 .6000 •6000 .6000
•5970 .5970 .5970 •5970
•5879 .5879 .5879 .5879
5724 .5724 .5724 .5724
5499 .5499 .5499 .5499
5196 .5196 .5196 .5196
4801 .4800 .4800 .4800
4292 .4285 .4285 .4285
3630 .3601 .3600 .3600
2736 .2636 .2617 .2615
2122 .1954 .1888 .1873
1587 .1387 .1267 .1194
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Table 2.3 Normalized stress intensity factors for

the crack profiles given in table 2.1 for applied

tension.

Rectangular Profile ({ = •6), Tension

M 1 3 5 I0 20 ®

t
.0 .258 •271
.1 •258 .270
.2 .256 .268
.3 •253 .263
.4" .249 .256
.5 .243 .246
.6 .236 .235
.7 .225 .219
.8 .210 .199

.9 .185 .172

.95 .163 .151

.98 .138 .128

.272
•272
269
265
258
250
237

220
197

• 166
• 145
• 124

.273 .273 •273

•272 .272 .273
.270 .270 .270

265 .266 .266
259 .259 .259
249 .249 .250
238 .238 .239
221 .222 .222
197 .198 .199

.161 .161 .163

.136 .130 .132

.117 .107 .098

Table 2.4 Normalized stress intensity factors for

the crack profiles given in table 2.1 for pure

bending.

Rectangular Profile ({ = .6), Bending

t
.0
.I
.2
.3

.4

.5

.6
.7
.8
.9
.95
.98

M 1 3 5 I0 20 ®

144
145
146
148
151
154

158
162

•165
•166
.161
• 150

.152 .153
151 .152
148 .149
144 .144
136 .137
126 .126
116 .114
103 .097

.093 .077

.087 •060
•089 .060
.091 .066

•153
• 152
• 149
•145

137
126
114
958

071
040

•029
•034

.153 153
.152 152
•149 149

.145 145

.137 137

.126 128

.114 .114

.096 .096
.071 .071
.034 .033
.012 .006
.009 -.013
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Table 2.5 Normalized stress intensity factors for

the crack profiles given in table 2.2 for applied
tension.

Semi-elliptic Profile (_0 = •6), Tension

t
.0
.I
.2
.3
.4
.5
6
7

8
9
95
98

M 1 3 5 I0 20 ®

•258 •246 .245

.258 .246 .245
•256 .245 •244
.253 .243 .243
.249 .241 .240
.243 .238 .236
.236 .234 .232
.225 .228 .226

.210 .218 .218

.185 .201 .206
.163 .184 .193
.138 .162 .173

•245
244
243

242
240
236
231
225

.217

•208
•201
• 189

•244
• 244

243

242
239
236

23!
225
217
208
204
200

•244
•244
•243
242
239

236
231
225
217
207
203
205

Table 2.6 Normalized stress intensity factors for

the crack profiles given in table 2.2 for pure
bending.

Semi-elliptic Profile (_0 = .6), Bending

t
.0

1
2
3
4
5
6
7
8

.9

.95

.98

M 1 3 5 I0 20 ®

144
145
146
148
151
154
158
162
165
166
161
150

135 .134 .133
136 .135 .135
141 .140 .139

149 .148 .147
160 .159 .158
176 .175 .174
191 .190 .189
209 .210 .209
227 .233 .233
239 .253 .261
236 .257 .274
219 .244 .273

133
135
139
147
158
174

189
209
232
261

.281
•293

133
134
139
147
158
172

189
208
23!
259
280
302
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Figure 2.1 The shell geometry.
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Figure 2.2 Representation of the two-dimensional
stress state in the net ligament with stress
resultants for the mode 1 problem.
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Figure 2.3a Force and Displacement quantities as

defined by plate or shell theory that are used in

the mode 1 line-spring model.
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Figure 2.3b Force and Displacement quantities as

defined by plate or shell theory that are used by

the line-spring model for mode 2 loading.
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Figure 2.3c Force and Displacement quantities as

defined by plate or shell theory that are used by

the line-spring model for mode 3 loading.
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Figure 2.4 The superposition used to solve part-

through crack problems with the line-spring model.

All solutions are obtained for the problem in the

lower right (the perturbation problem) where the

only loads are applied to the crack surfaces.
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CHAPTER3

Through Cracks in Plates

In this chapter the singular integral equations for a cracked

plate under both symmetric (mode 1) and skew-symmetrlc (modes 2,3)

loaAings will be derived. The plate theory includes transverse shear

deformation. For mode 1 loading there is very little to add to the

existing literature [6,9-13]. The thin plate limit examined in these

papers will be reconsidered. For the skew-symmetric case stress

intensity factor solutions found in Refs. [14,15] for a single crack

wi!l be supplemented. Also some results for the double crack case

will be presented.

3.1 Formulation

The governing equations, both dimensional (Eqns. 3.1a-16a, 18a,

kEqns. 3lw I and non-dimensional r _. ,m. 18b,+nk_ l"_,^a *.^1^.

The dimensional relationships are defined in Appendix A. From

equilibrium

8NIl 8N12 8N 8N
0 xx +_______ = 0 (3.1a,b)

- 8y8x 1 + 8x 2 ' 8x '

8N12 8N22 8N 8N
. x/ YY = 0 (3.2a,b)

8x I + _x2 - 0 , 8x + 8y

8V 1 8V2

ax- ÷ --o ,

8V OV
_.Z 12(l+v]

+ v_y + 5 q(x,y) = 0 ,8x
(3.3a,b)
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aMll

BxI

aM12

+ _ - V1 = 0

BM aM

xx _ 58-_-+ 12(1+v)Vx = 0 , (3.4a,b)

8M12 _M22

Bx I + _ - V2 = 0 ,

BM BM

_._, __zz 5 = o (3 5a,b)
Bx By 12(l+u) Vy ,

where q(x,y) is normal loading to the plate surface. The other

varinbles are standard plate quantities (see Fig. 2.3). From

kinematical considerations,

8UlD Ou

ell - BxI ' exx - Bx ' (3.6a,b)

BU2D Ov

e22 - Bx2 , eyy = _yy , (3.7a,b)

1 BUlD BU2D 1[auov]' exy = 2 _ + _ ' (3.8a,b)

BU3D Ow

O1 = ax I + Pl ' Ox Bx + ]_x ' (3.9a,b)

BU3D Ow

02 - [}x2 + _2 ' Oy - By + fly ' (3.10a,b)

where 01 and 82 are the total rotations of the normals. For classical

plate theory they are zero showing that normals to the p]ate surface

stay normal, i.e. there is no deformation transversely. The

constitutive relations (Hooke's law) are,
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1
h_ll - E (Nll - vN22) _ : N vN' xx xx yy

1
he22 = _ (N22 - vN11 ) yy yy xx

1

he12 - 2/_ NI2 ' exy = (l+V)Nxy '

where E is Young's modulus and v is Poisson's ratio.

bending,

Mll = D [ 8-_1 + V-_x2 ]8pl 8fl2

_ _-_--+ ]
xx 12 (1-v 2)

M22 D [ 8p2 8Pl

M
YY - 12 (l_v2)

r _Pl 8P21
MI2: 2 [ b-_2+ b-_xJ '

1

Mxy = 24(1_u)

(3.11a,b)

(3.12a,b)

(3.13a,b)

From plate

(3.14a,b)

(3.15a, b)

(3.16a,b)

where,

Eh3
D=

12(1-v 2)

The linear transverse shear stress-strain relationships are,

1 V1 8 = V ,81 - hB ' x x

1 =V
82- h§ V2 ' 8y Y ,

(3.17)

(3.18a,b)

(3.19a,b)
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W}ler_

B - 5E (3.20)
12(l+u)

From here on only the non-dimensional variables will be used. Define

#(x,y) such that

- a- t N _ _a_b_ (32, 
Nxx - 8y2 ' yy = 8x2 ' xy - 8xBy '

and Eqns. 3.lb,2b are satisfied. Next combine Eqns. 3.6b,7b with

3.11b,12b to obtain,

8v (3.22)8u N - uN - N - uN
8x - xx yy ' 8y yy xx

Next use Eqns. 3.8b,13b to write,

1 8u 8v
(3.23)

or

82 1 _+ _](l+/))_--_yNxy = 5 [ 03u {}3v
OxSy 2 OyOx2

(3.24)

After substituting 3.22 into 3.24 we obtain,

82 1 02Nxx 82N
+

82N B2N

Ox2 8x
(3.25)

Using 3.21 this becomes,

V4# = 0 , (3.26)

where
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V2 _ 82 82
8x2 8y2

(3.27)

Next using 3.35-55 we can write,

8x 2

82M 82M

+ 2 xy + _ q(x,y) = 0
•8xSy 8y2 +

(3.28)

Substitute Eqns. 3.14b-16b into 3.28 to obtain,

83px + 83P Z

8x3 8x28y

G 83px + 12(1-v)2q(x,y) = 0 (3.29)

+ 8y3 + 8y28x

Look at the following expression from the first two terms of Eqn.

3.29,

8x3 8x28y 8x2

(3.30)

Substitute for _x and _y according to Eqns. 3.9b,lOb together with

3.18b,19b,

[°'' ° °]82 V'x 8_w __3[ 8_w
+ - _ _X + -

8x 3 8x28y 8x 2 8x 2 8y 8y2
(3.31)

Next use Eqns. 3.3b and 3.27 for substitution into 3.31 to obtain,

83/_x 83_y 82 [ 12(1+v)8x--_+ax2--_y- 8x2 s n(x,y)- v2w] (3.32)

Similarly,

83px 8.2

8Y3 + 8Y 28x 8Y2 [ 12(l+v)
" - S q(x,y) - V2w ] (3.33)

Eqns. 3.32,33 are now substituted back into Eqn. 3.29 to obtain,

V4w = { 12(1+v)5 v2 + 12(1-v2)) q(x'y) (3.34)
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Next use Eqn. 3.4b with substitutions from 3.14b,3.16b and 3.18b with

3.9b to write,

8w
r"x* _x -

12(1_v)2 5 + 2 8x - 8-y-

Similar substitutions with Eqn. 3.55 leads to,

* - + _ - axPy ay 120-v) 2 5 2

After defining the constants,

i 1
_-5(1-v) ' 7- 12(I-u 2)

and the new unknowns,

apx 8p_
l'l(x,y) - _y ax '

'(x'Y) : _[ 8'x _vB-7÷ ] -w ,

Eqns. 3.26,34,35,36 become,

v4_ = o.,

V4w = 0 ,

_v2_ - _ - w=0 ,

l-y
_- V2fl - fl = 0 ,

where q(x,y) has been assumed to be zero.

introduce the Fourier transform,

+00

_(x,a) = I #(x'y)eiaYdy '

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

To solve Eqns. 3.40-43 we

(3.44)
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+00

1 I - (3.45)¢(_,y) = _ _(_,a)e _aYa_ ,
_00

with identical definitions for _(x,y), #(x,y) and fl(x,y). After

making use of the relationships,

I+[V2f (x, y) eiaYdy 82f a2_ - 8x 2

I+[V4f (x, y) eiaYdy 84f 2a2 82--_ a4 _ (3.46)_ - 8x 4 8x 2 + ,

Eqns. 3.40-43 are reduced to the following ordinary differential

equations,

8x 4 8x 2 +

(3.47)

84_ 2a2 82_ a4- (3.48)

8x 4 Ox2 '

8x 2

8x 2

Assuming symmetry of loading and geometry

transformed solution for x>O of Eqns. 3.47-50 is,

t

(3.50)

with respect to x, the

, (3.51)

1 _+'[A 3(a) e-lalx + A4(a)xe-ialx] e-iaYdaw(x,y) = _ -®
, (3.52)

] ,o,,1 _A3 - x) A4(,,)_(x,y) = _-_ _® (a) + (21al_ e
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(3.53)

fl(x,y) - 2_ _ e e-_aYda , (3.54)

where

1/2

For either the symmetric or the skew-symmetric problem there are five

conditions with which to determine six constants, Ai(a), i=I,...,5,

and C(a). This shows that one constant is extra and we take

c(a)=0 , (3.56)

and proceed to

it. Now that

show that the problem can be uniquely solved without

the four unknowns, w,_,_, and flare known in terms of

the five unknown coefficients, the other plate variables are expressed

in terms of them. Nxx , Nyy, and Nxy are already expressed in this

form in _qn. 3.21. The other important expressions are,

Px _l-v 8fl 8__ (3 57)= 2 8y + 8x '

Py = -_ 2 8x + 8y '

Mxx = 7 { _ 8xSy + 8x 2 +

yy 8xSy + 8y2 + '

- ZSx_yMxy 24 (I+v) 8y2 8x2 '

8w 1-u 8n _ (3.62)V - + _" +
x 8x 2 8y 8x '
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Now

is,

V - 8w _.l-u Oil +
y Oy 2 8x Oy

(3.63)

u a3¢a3¢

8Y2 - !2+U) Oy28x 8x3
, (3.64)

(3.65)

if Eqns. 3.51-54 are substituted into Eqns. 3.21,57-65 the result

1 (+" 2[Al(al xA2(al]e-I_Ix -lay
Nxx = -_ J_®a + e da ,

Nyy- 2_ _® + A2(a)(a2x-2. {a{) e e da

(3.661

(3.67)

Nxy_ _x -[alAl(a ) + (l-xlal)A2(a) e e da
(3.68)

= -- _ _®aA5 (a)e'Rx e-laYda +

_-_Ij'+:[_lalA3(a)-(2a2_-xlal+l)A4(a)]e-lalXe-iaYda
(3.691

1-v 1;+:RAs(a) "Py = _ 2 2_ _ e-RXe-laYda -

(3.70/

+® ]2L_ f {(l_vla2[(2_lal_x)A4(al _ A3(a ) +Mxx : 21" -®

2{a{A4(a))e-la{Xe -lay da +
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e-RXe -xay da

(3,7_)

I+j®I(l-.U)a2[(2glai-x)A4(a) - A3(a)l *

2vlalA4(a)_e-lalXe-_aY da -

M
xy

_ 2Z.E(I_u)2_ i+;®aRks(a)e-RXe -_ay da ,

43.72)

la{A3(a)le-{alXe-iaY da

(3.73)

+®2 -lalXe-iaY da -
_' I A'4(a) e

_rx _- _®

.i_ J._+'aAS(a)e -Rxe _ay da
- _(I-_')2,

,¢
Y

-lalx -iay dot +g-GO

"_' I ®al }A4

(3.75)

I+:R -_xe-_aYda '1 A5Ca)e
_(1-v)_; _

-IalXe-i°tY da

= ,2 -(l+v)latAI(a) + A2(=) (_l+v-latx(l+v)

_y2 -®

i_yv= _ I :I(l+V)a2Al(a) * A2(a)(-2lal+x_2+va2x)le-la'xe-_aYd°t
+ (3.77)
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3.2 Symmetric loading, Mode I.

The symmetry conditions are,

N (O,y) =0 ,
xy

Mxy(O,y) = 0 9

Vx(O,y) = 0

(3.78)

(3.79)

(3.80)

After using this information in Eqns. 3.68,73,74 we obtain

1
Al(a) -lal A2(a) ' (3.81)

(a2+R2)+1
A3(a) = [al A4(a) , (3.82)

4ai (3.83)
A5(a) - 1-v A4(a)

This eliminates three of the five unknown constants leaving only A2(a )

and A4(a ). The following two mixed boundary conditions will determine

them.

N rO+ y) - _v tva v ;. _.
xxk , "l _"_ ' _ ....n '

u(O+,y) = 0 , y outside of L
n

Mxx(O+,y) = -f2(y ) , y in Ln ,

Px(O+,y) = 0 , y outside of Ln

84)_.

, (3.88)

(3.86)

, (3.87)

L = , , ... , , (3.88)n (al'bl) (a2'b2) (an'bn)

where

each section (ai,bi) defining a crack on x=O. Note that since all

length quantities are normalized with respect to the plate thickness

h, each section is actually (ai/h,bi/h). After using Eqns. 3.81-83 in
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Eqns. 3.66,76,71 and 69 we obtain the following,

lim -1 f+® -{a{x -iayNxx (O'y) = x_O 2-_ {alA2(a)e e da , (3.89)

By2 x=O x-O _ _ a e e da ,

(3.90)

= 2a2{a{+{a{_(l_v)jeMxx (O,y) x_O 2s _®

- 2a2Re -Rx} A4(a)e -lay da , (3.91)

Px (0 y) x_O _ (a) 2ma2e-RX-_ (a2+R 2)e da
' _ (3.92)

Note that Eqns. 3.80,90 are uncoupled from 3.91,92 for simple fi(y ) in

the mixed boundary conditions 3.84,86.

3.2.1 Tension.

The singular _ntegral equation for tension will be derived first.

Consider Eqn. 3.90.

8y2{x=O- 2_ _

From Eqns. 3.44,45 we invert 3.93,

4_

-2a2A2(a ) = _ 82u{ eiatdt ,
_® Bt21x=O

then integrate by parts twiceand

infinity.

_2a2A2(a) = _ia I+:_ _{Su

(3.93)

(3.94)

noting that u(t) is zero at

iatdt , (3 95)e
x=O
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= -a u(t)eiatdt , (3.96)

or

1 _ u(t) eiatdt ,A2(_) = 2 L
n

(3.97)

where use has been made of gqn. 3.85. Now A2(a ) is substituted into

Eqn. 3.89 and the displacement u(t) becomes the only unknown in the

problem. After defining

ul(t) = u(t) ,

we have,

lim -I [+®lal I ul(t)eiatdt e-lalxe-iaYda
Nxx (O'y) = x*O _J_® 2 L

n

, (3.98)

or

+w

"-'I u,c, ITe
Nxx (O'y) = x*O _ L -®

n

lalxeiaCt-Y) de dt

Next using

]im _®acosa(t_y)e-aXda_ -2x*O (t_y) 2 '

Eqn. 3.99 becomes,

ul(t) dt

1 ;gn (t_y)2 ,
Nxx(O,y) - 2f for all y

(3.99)

(3. 100)

(3.1ol)

or

1 f ul(t)

-fl(y ) = _ _Ln(t_y)2
dt , for y in L

n
(3. lO2)
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For a single crack in tension Eqn. 3.102 becomes,

1 +a ul(t) R ®
2-_ _ 2 dt = fl(y ) = _ 11 °1

-a (t-y) xx- hE - E

(3. 103)

The solution is

o /2 (3.104)
ul(Y ) = 2 _ (a2-y2) 1

If we substitute this back into Eqn. 3.101, the stress in front of the

crack is,

°l(Y) 1 I+a2 _ (a2-y2) 1/2 ® { )
g 2_ -a E (t_y)2 dt- o lyl- - E (y2 a2)1/2 1 (3.105)

To determine the stress intensity factor, we use Eqn. G.lO,

kl = lira [2(y-a)]1/20 l(y) (3.106)y+a

lira _y [2(y-a) ] 1/2

y+a (y+a) 1/2 (y_a) 1/2

_ f7 (3.107)

Therefore

k 1
-1 (3.1o8)

Now determine the stress intensity factor using Eqn. G.11.

4# lira ul(t) E lira 2 -_ (a2-y2)l/2 - a® _a ,
k 1

y+a 42(y-a) - 2 y*a E 12(y-a)

(3.1o9)

where the following substitutions have been made,

3-v Z (3.11o)
K- l+u ' /J - 2(l+u)

Therefore using either stress or displacement the result is the same.

This should not be taken for granted because the equations predicting
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stress and displacement are from plate theory, while the stress

intensity factor is defined in terms of elasticity theory. It is

important to note that the classical plate theory is identical to

Reissner's theory for tension, Eqn. 3.101.

In Fig. 3.1a at the end of the chapter the stress intensity

factors for two identical cracks with a/h=l are plotted for varying

separation distance.

3.2.2 Bending.

For the bending problem from Eqn. 3.91

1 _+:A4(a)_(a2-R2)e-iaYdaPx(°'Y) =u 2(y) -2, _ (3.111)

After inversion, making use of Eqn. 3.55, A4(a ) in terms of the new

unknown, u2(t ) is,

_ !__v eiatdtA4(a) _ f u2(t)
L
n

(3.112)

This is substituted into Eqn. 3.91,

M (O,y) =
xx

+¢o

x-O 21r )L
n

lal_(1-v)j e

- 2a2Re -Rx} eia (t-y) da dt (3.113)

After using Eqn. 3.100 and the following integrals,

lim f+®a3cosa(t_y)e-aXda _ 6
x-O 0 (t-y) 4 '

(3.114)

lim f_®a2Re-RXx-O cosa(t-y) da - 1
27 (1-v)
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Ko(]?lt-yl)] + 127(1-V)K2(_lt-yl)}
(t_y)2

(3.11s)

where

f ,2 11/2
P l_J = (10)1/2 ,

(3.116)

we obtain

_xx(O,y)-
)'_127_(l-u) 2 _(1-u) (3+v)

1 SL l, (t-y)4 (t-y)22x u2(t) - + +

n

which is valid for all y. K2 and K0 are modified Bessel functions of

the second kind. If y is in Ln, we use Eqn. 3.87 to write,

_(l-v2) _ u2(t) dt + 1 I u2(t)K22 (y't) dt , (3.118)

-f2 (y) =- 2_ Ln(t_y)2 _ Ln

where

K22(Y ,t)
= lln(plt-yl) + {27(1-v)- 127_(1-v) 2

(t_y) 2 - (t-y) 4

Ko(Plt_y[) ] + 12_(1-P) _ln(plt_y,) t (3 119)
(t_y)2 Z2(_lt-Yl) -

It is convenient to write this Fredholm kernel in terms of a single

variable,

SK(z) #1t-y I
K22(y,t) = 12(l+v) ' z =

(3.120)

where

K(z) = + -'_ - 4Ko(z) + 4K2(z) + -_
Z z Z

(3.121)
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To show that K(z) is a Fredholm kernel, the small z expansions for the

Bessel functions are,

Ko(z ) ~ -in(z/2) - 7e - (z/2)21n(z/2) + O(z 2) (3.122)

K2(z ) ~ 2/z 2 -1/2 -1/2(z/2)21n(z/2) - 1/2(z/2)2(Te+5/4)

- 1/6(z/2)41n(z/2) + O(z 4) , (3.123)

where Euler's constant, 7e = .5772157 .... Substitution of these

expansions into Eqn. 3.121 leads to the following behavior for K(z),

lim K(z) ~ {In(z/2)+(Te-23/4)+(z/2)21n(z/2)+..} (3.124)z_O

For simple plate bending,

f2 (y) = _xx - h2E- 6E (3. 125)

The log singularity has been separated from the Fredholm kernel,

see Eqn. 3.119. In such a case it was found helpful to handle this

part in closed form. However it is ._i .__.posslu_e _,l_ the _v,_,_^-*-_k"*_,u_v,of

the log term is nearly equal to, but of opposite sign as the rest of

the kernel. Separate treatment here could lead to convergence

problems especially for geometries (a/h approaching ® for Eqn. 3.118)

where the coefficient of the log term gets large. In many problems

this coefficient is small and a closed form analysis of the log is not

necessary. See Appendix I for the effect of this log behavior on the

numerical convergence. It should be noted that if the unknown were

the derivative of the rotation, this log term would be replaced by,

(t-y) ln(p[ t-y I ) , (3.126)
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which is non-singular and easier to integrate (see. Appendix I). This

is the least desirable feature of the strongly singular formulation.

The Fredholm kernel is essentially divided by (t-y), or alternatively,

the infinite integrals which determine the Fredholm kernel decay more

slowly by a factor of a, see Appendix J, section 4. This means more

asymptotic analysis for equal decay between the two methods. For

example the infinite integral for the tension problem, Eqn. 3.100

would be replaced by,

x_O )0 t-y

In most problems the infinite integrals must be evaluated numerically

so this factor of a becomes important, see Chapter 5.

For a single crack of half length a, Eqn. 3.118 may be written as

h +1 u2(_r) dr + 12h(1+v) 21r _r)K(_plr-sl) dr =-_
24ax -1 (r-s)2

If we define

XX '

-1<s<1 (3.128)

a plt-yl (3.129)24a _ g(r) _ : _fllr-sl : z : ,u2(t) - h xx

the equation becomes,

5 2( +I_1 +1 _(r) dr + 7(1.v)(a/h) j_lg(r)K(_) dt = -1 (3.130)
-1 (r-s) 2

This equation must be solved numerically, see Appendix E for an

explanation of the collocation method. From section 2 of Appendix G,

and Eqn. 3.130 the stress intensity factor (actually the maximum value

at the plate surface) will be given by,
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k1
- f(1) = f(-1) , (3.131)

where

g(r) = fCr)(1-r2) 1/2 , -1SrS1 (3.132)

The stress intensity factor of Eqn. 3.131 is predicted by either

stresses (Eqn. G.IO) or displacements (Eqn. G.11).

The governing equations for classical plate bending are identical

to 3.1-20 with the exception that the transverse shear deformation,.

0. in Eqns. 3.18,19 arei

symmetry conditions, Eqns.

zero, or B (Eqn. 3.20) is infinite. The

3.78-80, cannot be separately satisfied.

For classical plate bending,

Nxy(O,y ) = 0 , (3.133)

8M

xy + Vx(O,y ) = 0 (3.134)8y

The result of this formulation for the determination of the rotation

is,

3÷V h 1 _+1 u2(_r ) -1<s<1 (3.135)
l+v 24a • -I (r-s) 2 dr = -_xx '

or in terms of g(r),

l+v x (r_s)2
(3.136)

This equation can be solved in closed form.

°2(Y) lyl i}
6E - 6E ( [y2_(a/h)2]l/2 '

(3.13'7)
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l+v 24a 02 |
u2(Y) : 3*---u"h 6E _1

Eqn. 3.137 predicts

k 1
- 1 ,

while Eqn. 3.138 predicts

kl___k_._ 1+__2_

-a/h<y<a/h (3.13,_)

(3.139)

(3.140)

This inconsistency shows that the classical plate theory is inadequate

to solve for crack tip SIFs for bending. It is also true for out-of-

plane shear and for twisting.

In Fig. 3.2 the normalized stress intensity factor as a function

of crack length to plate thickness ratio is plotted for Reissner's

theory. Table 3.1 lists some values. Note that for large h/a the

limit is one, the same as the classical prediction using the stress

intensity factor defined in terms of stress, Eqn. 3.139. The other

limit, the thin plate limit, is not so clear. It has been reported by

[6] that in the limit as h/a goes to zero, the stress intensity factor

for the Reissner plate, (Eqn. 3.131) approaches the value (l+u)/(3+u)

as predicted by Eqn. 3.140 from the classical theory, (note that h=O

is not valid for Reissner's theory). Another way of putting this is

that Eqn. 3.130 becomes 3.136. The evidence provided by table 3.1 for

a/h = 1000 seems to indicate that this is not the case. Numerically

it is very difficult to obtain convergent results in the long

crack/thin plate domain using the methods of Appendix E, and for
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further results some kind of asymptotic analysis with a specially

suited numerical scheme seems appropriate. As an aside, for this

geometry, a power series (Eqn. E.29) was not adequate using single

precision (14 digits). The coefficients were as high as l.XlO 18, for

example see table E.1. The problem was solved using Chebychev

polynomials. The following analysis is provided to support the claim

that the curve in Fig. 3.2 does not "reach" the value (l+v)/(3+v).

3.2.3 Thin Plate Bending.

We consider the large a/h limit of Eqn. 3.130. Only the Fredholm

kernel need be analyzed. First define

I(s,a/h) - _(l+v)(a/h)2 g(r)K(ff) dr

- 2_(1÷_) g(r)K(g) dr , (3.141)

where p=_(a/h) is introduced _,_........._.,_._,,_ .... . From A.... _ _

p_ _(l+v) (r_s)2

- _(I+v) (r_s)2

+Ig'(r) dr ,Isl<l,2dr
_(l+v) J-I r-s

(3.142)

2 _+lgj_(__ dr Is I>1
dr - ,(l+v) _-I r-s ' '

(3.143)

= ? , y "near' 1, ie. p(1-y) = 0(i) (3. 144)

If Eqn. 3.142 were valid for Isl=h/alyl_l then in the limit as p

approaches infinity, Eqn. 3.130 would be identical to Eqn. 136 and

therefore the stress intensity factor would be (1+v)/(3+v). But this

is not the case. Figs. 3.3a-c compare I(s,a/h) to the limiting
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integrals above. The numerically determined function for g(r) was

used to compute these integrals. See Figs. 3.4-5 for plots of

g(r),f(r) as defined in Eqn. 3.132, and Fig. 3.6 for the ratio of g(O)

from Reissner's theory to g(O) from the classical theory. Also see

table 3.2 for numerical values of this ratio. This table shows that

in the limit as h_O, Reissner's theory behaves like the classical

theory away from the crack tip. With regard to Fig. 3.3, the distinct

difference between I(s,a/h) and the limiting integrals is that

I(s,a/h) is continuous at s=l. The nspikeW created when I(s,a/h) goes

from 1- to 1 + gives a contribution to the stress intensity factor that

makes it different from (l÷u)/(3+u). This contribution is of

significance because it is located at the crack tip. In order to

proceed further in the analysis, the area of the spike, which would

represent a normalized force (or couple), must be determined.

Consider the following:

I+1, 2 _2}lira _2x(l+u)I(s,a/h) + ds , (3.145)M = p_® 0

2

p_® 2x(l+v) gCr) KCf)ds dr + 3+---u '

=lim p ) +- +- K2(u ) dr + 3+---_'
p*® 2_ (l+v) u u u

(3.146)

u=p(l-r)

(3.147)

Again the behavior of this integral near r=l makes it difficult to

analyze. Note that the order one contribution to M coming from the

"outer solution" of g(r), Eqns. 3.129,138, drops out.
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The

but we can make the following conclusion.

has the behavior of Eqn. 3.143,

lim lim 1

?+® s.l + l(s,a/h) ~ _l-s '

where from Eqn. 3.143, it may be stated that

This

limiting value of the stress intensity factor was not found

Since l(s,a/h) for {sl>l

(3. 148)

limlim I(s,a/h) ~
p÷® s*l +

order analysis is supported by Fig. 3.3.

(3.149)

This tells us that the

magnitude of the integrated Fredholm kernel, i.e. I(s,a/h), which

represents a normalized stress resultant term, (aCtually a couple),

becomes infinite according to Eqn. 3.149. Again since we are dealing

with a region where p(1-s) is of order one, the 'thickness' or support

of the spike is of order (l-s) or p-1 Therefore the area under the

spike, given by eqn 3.147, which represents normalized force, should

go to zero as p-l/2 In order to determine the stress intensity

factor for h/a approaching zero the coefficient of this leading order

term must be known. If the area were of order one, the contribution

to the stress intensity factor would be of order (l-s) -1/2, see Sih

[72]. If the value of stress resultant were of order one, the area

would be zero and there would be no contribution. But the limit is

between these two cases and the contribution is finite, probably

resulting in a stress intensity factor that can be drawn within the

space provided by the lower plot of Fig. 3.2.

Some other results for the bending problem are given at the end of

the chapter. In Fig. 3.7 the normalized bending stresses ahead of the

crack tip are plotted for a/h=l and 10 (Eqn. 3.117). In table 3.3
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someresults for crack interaction are listed for four different (:rack

length ratios, (this table may also be found in [59]). Fig. 3.1

provides a plot of the interaction of equal length cracks where a/h=l

for tension, bending, out-of-plane shear and twisting to compare how

strong the interaction is for the various loadings. In-plane-shear is

identical to tension, (shown later in this chapter).

3.3 Skew-Symmetric loading, Nodes 2 t 3

The symmetry conditions are

Nxx(O,y) = 0 , (3. 150)

Mxx(O,y ) = 0 (3. 151)

After using this information in Eqns. 3.66,71 we obtain,

AI( ) : 0 , (3.152)

2 )A 4 (a) igA3(a) = 2_lal+(1-v)[al + _(1-v)RAs(a) (3.153)

This eliminates two of the five unknown constants leaving only

A2(a ),A4(a ) and A5(a ) . The following mixed boundary conditions will

determine them.

Vx(O+,y) = -f3(y ) y in L' n '
(3.154)

w(O+,y) = 0 , y outside of L , (3.155)
n

Nxy(O+,y) = -f4(y ) , y in Ln. , (3.156)

v(O+,y) = 0 , y outside of L , (3.157)
n

Mxy(O+,y) = -f5(y) , y in Ln ' (3.158)

°
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py(O +,y) = 0 , y outside of Ln (3. 159)

If Eqns. 3.152,153 are substituted into Eqns. 3.52,68,70,73,74 and 77,

the quantities appearing in 3.154-159 may be expressed in terms of the

unknowns as follows:

+®

-_ f ®a2A4(a) laixe-iaYdaYx(X,y) = -_ _ e-

i _+®- _(l-u)_ _®aA5(a)e-RXe-laYda , (3.160)

= A (a) 2_la[+ (1,u) lal + xw(x,y) _®

}+ A5(a)_(1-u)R e-{a{x -e laYda , (3.161)

N
xy

i _+® -lalxe-iaYda , (3.162)(x,y) = _'_ a(l-xlal)A2(a)e
--®

'_y 2x _®k2(a ) a2x-21al+uxa 2 e Xe-laYda , (3.163)

Mxy(X,y ) = -7(1-v)_ k4(a ) xalal-a+ _-_
--®

+ _(1-V) R[ a [A5 (_)}e- ' "[ Xe-iaYda

+®

_ _(1_p)2_1 f (a2+R2)AS(a)e-Rxe-iayda , (3.164)
--®

py(X,y) = _ A4(a ) x+ (l+v) lal +
--®

- 2ai"-_(1-u)RA5(a)} e- Ia IXe-iaYda -_fl-v_1 f+m -RXe-iaYda+ 2 _ _2x RA5 (a)e
--W

(3,165)
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Note that N×y is uncoupled from Mxy and Vx. The integral equation for

N can be seen to be the same as for tension, compare Eqns. 3.89,90
xy

with 3.162,163. The result for

u4(t) = v(O +,t) ,
(3.166)

is

1 _ u4(t) dt for all y (3 167)
Nxy(O'Y)- 2x Ln(t_y)2 ' ' "

or

1 _ u4(t)

-f4(y ) = _ Ln(t_y)2

dt , for y in L (3.168)
n

For in-plane-shear,

_12 a4

f4 (y) = _xy - hE - E
(3.1691

All through crack results for tension are also valid for in-plane-

shear. To solve the coupled problem of Mxy and Vx, first define

u3(t) = w(O+,t) , u5(t) = py(O+,t)
(3.17o)

The unknowns A4(a ) and As(a ) can then be expressed as,

A4(a ) = -i(1-v) lal _ Us(t)eiat dt
2a L

n

(3.171)

-2ia f u3(t) e iat dt
A5(a) - _R(1-v) L

n

+ :_ _R (l-v) L
n

(3.172)
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It remains only to substitute these expressions into Eqns. 3.160 and

]64 and to evaluate the infinite integra]s in a way similar to the

bending problem. The equations become,

I (t-y)2Vx(O'Y)- 2, {u3(t) [ 2

n

+ K33(z)] + u5(t)K35(z)}dt ,
(3.173)

1 {u5(t) [7(l-y2)
l_xy(O Y) = _ fL (t-y) 2 + K55(z)] + u3(t)K53(zl}dt '' (3.174)

n

where

K33(z) = _2{-ln(z)÷ [K2(z ) - 2 ] + [Ko(z)+ ln(z)]},
Z

(3.175)

K35(z) #{ _-_- [z 41 ...... "1= + _JK2(z) + Z_otZ) ]
Z

, (3.176)

s
K55 (z) - 12(1+v){ ln(z) + z 42 + 4Ko(z) - 4K2(z) 24_ -- K2z_()

Z z

+ ln(z)]- [2Ko(z)+ 21n(z)] } , (3.177)

K53(z)- 12(1+ )-8 [z A1 "1-3 + L + _]K2(z ) - zKo(z ) ) (3.178)
Z

If Eqns. 3.154,158 are applied to 3.173,174 the singular integral

equations become,

L _ 2u3(t)
2_ L (t-y)2

n

I [ {u3(t)K33(z) + u5(t)K35(z))dt = _f3(y )
dt + _-_ )L n (3.179)

7(1_ 2)1 Us(t)
_g (t-y)2

n

1
dt + _ f {Us (t) K55 (z) ÷ u3(t)K53(z)}dt

L
n

= -f5(y ) (3.180)

The through crack loading for out-of-plane shear is,
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f3 (y) = _x -- 12(1+.)5Eh _1 = _5E _3 ' (3.181)

and for twisting,

_12 Fs (3.182)
fs (y) = _xy h2E 6E

For small z,

K33(z) ~ p2(_ln(z/2)_(1/2 + 7e)-3/2(z/2)21n(z/2)+...} , (3.183)

K35(z) ~ p{_z/21n(z/2)+(9/S-Te/2)z-2/3(z/2)Zln(z/2)....} ,(3.184)

K55(z) ~ 12(1+u)5 {lnCz/2)+(Te+23/4)_(z/2)21nCz/2)+...} (3.185)

K53(z) ~ 5_ {(z12)lnCz12)+CTe12_918)z+213(z12)31n(z/2)+..)12(1+u)
(3.186)

The effect of this behavior on convergence is shown in Appendix I.

The collocation method was used to solve Eqns. 3.179,180 with

f(y) given by 3.181,182 for a single crack, (tables 3.4-6, see also

Ref. [15]), for two identical interacting cracks, (Figs. 3.1c,d), and

for two interacting cracks of different size, (table 3.7a,b). The

notation for the double crack is given in Fig. 3.8a,b. For a single

crack, the stresses ahead of the crack tip are plotted in Figs.

3.ga,b.
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Table 3•1 The effect of Poisson's ratio v and

crack length to plate thickness ratio a/h on the

normalized bending stress intensity factor.

See also Figure 3.2. #=6M/h 2.

kl(h/2)

a/h
.05
.I
.25
.5
1.
2.
4.
6.
10.
100•
200.
1000.

v=O

9851
9583
8735
7804
7020
6518
6211
6091
5984
5803

V=o3

•9885
•9676
•8992
•8193
•7475
•6997
.6701
.6446
.6481
.5306
.6292
.6276

v=.5
•9900

•9717
.9111
• 8383
.7707
• 7247
• 6960
• 6847
•6746
•6575
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Table 3.2 The ratio of crack surface rotation for

Reissner's theory to that of the classical theory
at the center of a cracked plate subjected to

bending, P=.3. See also Figure 3.6.

a/h PR(0)/Pc (0)
*0 2. 538* (3+u) / Cl÷u)

.5 1.892
1.0 1.551

1.5 1.394
2.0 1.309
2.5 1.255
3.0 1.219
4.0 1.172
5.0 1.142
6.0 1.122
7.0 1.107
8.0 1.095

10.0 1.079
100.0 1.011

200.0 1.006
1000.0 1.000

_ 1.
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Table 3.3 Bending stress intensity factors for a

plate with two collinear cracks, o=6M/h 2, v=.3

bl'al b2-a2 1a - 2 - I, c - 2 , d = a2-b 1

PLATE BENDING

d/a 0.1 0.25 0?5 1

c/a

2

I .8799 .855! .8313 .8045 °7798 _7475

kl(al) _ 0.5 .8071 .7938 .7821 .7698 .7593 .7475
0.25 .7711 .7647 .7598 .7551 .7513 .7475

a_-_a 0.1 .7532 .7512 .7500 .7490 .7482 .7475

.8O49

.7698

.7550

.7498

1 1.294 1.076 .9599 .8697

kl(bl) 0.5 1.063 .9143 .8458 .7995
0.25 .9161 .8220 .7863 .7663

a_ 0.1 .8088 .7678 .7563 .7514

.7475

.7475

.7475

.7475

1 1._o4 I .v,v .9599 .8697 .8049 .,47_

kl(a2) 0.5 1.012 .8405 .7498 .6786 .6261 .5794
0.25 .7990 .6595 .5867 .5297 .4872 .4496

o,[a"a 0.1 .5647 .4577 .4037 .3627 .3325 .3060

1 .8799 .8551 .8313 .8045 .7798 .7475

kl(b2)__ 0.5 .7395 .7071 .6771 .6434 .6132 .5794
0.25 .6275 .5867 .5507 .5135 .4816 .4496

o,_'a 0.1 .4817 .4293 .3917 .3577 .3308 .3060
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Table 3.4 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting, a3=3V/(2h), OS=6M/h2, u=.3.

OUT-OF-PLANE SHEAR TWISTING

k 2 (h/2) k 3 (0) k 2 (h/2)

a3_-_a a3_ a5_a

k3 (o)

a/h
.01 .0000 1.0009 .9991
.05 .0007 1.0138 .9862

.1 .0039 1.0398 .9587

.25 .0336 1.1402 .8557

.5 .1400 1.3223 .7056
1.0 .4656 1.6760 .5218
1.5 .8510 2.0142 .4186
2.0 1.2615 2.3425 .3527
3.0 2.1201 2.9800 .2732

4.0 3.0067 3.6007 .2268
5.0 3.9100 4.2099 .1961
6.0 4.8249 4.8107 .1742
8.0 6.6784 5.9938 .1448

I0.0 8.5539 7.1592 .1257

-.0000
- 0003
- 0018
- 0121
- 0359
- 0697
- 0850
- 0913

- 0934
- 0910
- 0876
- 0840
- 0776
- 0722
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Table 3.5 The effect of crack length to plate

thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting, a3=3V/(2h), a5=6M/h2 , v=O.

OUT-OF-PLANE SHEAR TWISTING

k2 (h12) k 3 (0) k 2 (h12) k s (0)

.01 .0000 1.0009 .9989
.1 .0039 1.0397 .9471
.5 .1368 1.3232 .6530

1.0 .4442 1.6831 .4669
1.5 .8005 2.0321 .3696
2.0 1.1765 2.3739 .3095
3.0 1.9578 3.0431 .2388
4.0 2.7609 3.6992 .1982
5.0 3.5770 4.3463 .1716

6.0 4.4022 4.9867 .1527
8.0 6.0709 6._529 .1274

10.0 7.7568 7.5048. .1109

-.0000
-.0022
-.0422
-.0770
-.0910
- 0959
- 0960
- 0925
- 0883

- 0843
- 0773
- 0716
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Tab]e 3.6 The effect of crack length to plate
thickness ratio a/h on the normalized stress

intensity factors for out-of-plane shear and for

twisting, o3=3V/(2h), a5=6M/h 2, u=.5

OUT-OF-PLANE SHEAR TWISTING

k2(h/2) k3(0) k2(h/2) k3(o)

a/h
.01 .0000 1.0009 .9992 -.0000
.1 .0039 1.0397 .9640 -.0015
.5 .1414 1.3219 .7326 -.0327

1.0 .4761 1.6725 .5523 -.0655

1.5 .8765 2.0051 .4469 -.0814
2.0 1.3051 2.3263 .3782 -.0884
3.0 2.2049 2.9470 .2939 -.0916
4.0 3.1364 3.5486 .2441 -.0899
5.0 4.0870 4.1372 .2111 -.0869
6.0 5.0506 4.7164 .1874 -.0836
8.0 7.0049 5?8542 __ .1555 -.0775

10.0 8.9840 "6.9720 .'1348 -.0724

7O



Q

Table
with

plane shear loading, o = 3V/(2h), v=.3.

3.7a Stress intensity factors for a plate
two collinear cracks subjected to out-of-

bl-al b2-a2 1a - 2 - 1, c - 2 , d = a2-b 1

PLATE, OUT-OF-PLANE SHEAR
d/a 0.1 0.25 0.5 1

c/a

2

k3(a 1)

1 1.763 1,702 1.675 1.669 1.673 1.676

0.5 1.736 1.699 1.682 1.675 1.675 1.676
0.25 1.708 1.688 1.679 1.676 1.676 1.676
0.1 1.687 1.680 1.677 1.676 1.676 1.676

k3(b 1)

1 2.909 2.124 1.812 1.694 1.677 1.676

0.5 2.349 1.906 1.745 1.687 1.677 1.676
0.25 2.028 1.783 1,706 1.680 1.676 1.676
0.1 1.804 1.707 1.684 1.677 1.676 1.676

1 2.909 2.124 1.812 1.694 1.677 1.676
0.5 1,348 ,9231 .7425 .6719 .6613 .6611
0.25 .6723 .4362 .3319 .2908 .2849 .2850
0.1 .2835 .1741 .1254 .1065 .1039 .1040

1 1.763 1.702 1.675 1.669 1.673 1.676

k3(b2) 0.5 .7705 .7059 .6722 .6596 .6598 .6611
0.25 .4039 .3387 .3020 .2863 .2846 .2850

o_a 0.1 .2015 .1474 .1180 .1056 .1039 .1040

k2(a 1)

oF

1 -.5879 -.5348 -.5040 -.4844 -.4739 -.4656
0.5 -.5214 -.4936 -.4791 -.4711 -.4676 -.4656
0.25 -.4906 -.4767 -.4703 -.4672 -.4661 -.4656
0.1 -.4731 -.4684 -.4667 -.4659 -.4657 -.4656

1 .0737 .1550 .2512 .3596 .4333 .4656

k2(bl) 0.5 .4199 .3945 .4087 .4365 .4573 .4656
0.25 .4979 .4566 .4521 .4579 .4635 .4656

a_a"a 0.1 .4914 .4677 .4639 .4643 .4653 .4656

k2(a 2)

1 -.0737 -.1550 -.2512 -.3596 -.4333 -.4656
0.5 .2489 .1600 .0827 .0035 -.0480 -.0700
0.25 .2065 .1438 .0917 .0391 .0056 -.0084
0.1 .1052 .0739 .0483 .0225 .0062 -.0004

1 .5879 .5348 .5040 _4844 .4739 .4656

k2(b2) 0.5 .2177 .1717 .1352 .1028 .0818 .0700
0.25 .1442 .1087 .0748 .0409 .0189 .0084

a_a-'_ 0.1 .0839 .0628 .0419 .0202 .0063 .0004
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Table 3.7b Stress intensity factors for a plate

with two co]linear cracks subjected to twisting.

o = 6M/h 2, v=.3.

bl-al b2-a2 1a : _- = 1, c - 2 , d = a2-b 1

PLATB, TWISTING

d/_ 0.I 0.25 0.5 I 2
c/a

1

k2(a 1) 0.5
0.25
o.1

•5058 .5081 .5110 .5147 .5181 .5218
•5131 .5144 .5160 .5182 .5200 .5218
•5183 .5188 .5195 .5204 .5212 .5218
•5210 .5211 .5213 .5215 .5217 .5218

1

k2 (bl) 0.5
0.25
o.1

•6748 .5826 .5432 .5239 .5192 .5218
•6526 .5726 .5404 .5252 .5210 .5218
•6104 .5524 .5322 .5238 .5216 .5218

.5590 .5319 .5248 .5224 .5218 .5218

1

k2(a2) 0.5
0.25

o_-_a 0.1

•6748 .5826 .5432 .5239 .5192 .5218
•4484 .3878 .3631 .3521 .3503 .3527
•2737 .2349 .2195 .2130 .2122 .2139
• 1269 .1065 .0986 .0955 .0951 .0959

1

k2(b2) 0.5
0.25
o.1

.5058 .5081 .5110 .5147 .5181 .5218

.3532 .3505 .3490 .3489 .3502 .3527

.2253 .2184 .2141 .2121 .2123 .2139

.1105 .1019 .0973 .0953 .0951 .0959

1

k3(al) 0.5
O. 25

o,Ta 0.1

.1035 .0958 .0877 .0792 .0732 .0697
•0905 .0856 .0805 .0752 .0716 .0697
•0792 .0768 .0744 .0720 .0704 .0697
•0721 .0714 .0708 .0702 .0699 .0697

1

k3(bl) 0.5
O. 25
o.1

.0054 -.0052 -.0234 -.0462 -.0619 -.0697
-.0349 -.0337 -.0424 -.0559 -.0655 -.0697
-.0605 -.0554 -.0580 -.0638 -.0680 -.0697
-.0702 -.0669 -.0671 -.0684 -.0693 -.0697

1

k3(a2) 0.5
0.25

oG' o.1

-.0054 .0052 .0234 .0462 .0619 .0697

-.0304 -.0192 -.0073 .0057 .0141 .0179
-.0266 -.0177 -.0103 -.0032 .0012 .0030

-.0137 -.0089 -.0054 -.0023 -.0005 .0002

1

k3(b2) 0.5
0.25

a/W' o.1

-.1035 -.0958 -.0877 -.0792 -.0732 -.0697
-.0452 -.0387 -.0320 -.0250 -.0203 -.0179
-.0221 -.0172 -.0124 -.0076 -.0045 -.0030
-.0106 -.0076 -.0049 -.0024 -.0008 -.0002
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Figure 3.1a-d Normalized stress intensity factors
in a plate with two identical collinear cracks of

half length a/h=l loaded in tension (a), bending
(b), out-of-plane shear (c), and twisting (d).

u=.3, Ol=Nxx/h , a2=6Mxx/h2 , o3=3Vx/(2h), a4=6Mxy/h2
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h,/a

Figure 3.2 Normalized stress intensity factors in

a plate for bending, v=.3, o=6Mxx/h 2.
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Figure 3.3a-c Plots of the Fredholm integral term

from Reissner's theory of plate bending (Eqns.

3.129, 140) for a/h=lO (a), a/h=lO0 (b), a/h=lO00
(c), (solid lines), compared to the limit from
Appendix E, (dashed lines).
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Figure 3.4 plots of the normalized rotation for

plate bending for a/h=lO,lO0,1000 from Reissner's

theory compared to classical theory, y=.3,

pCy/a) = Ca/h)C_/S) gCy/a)
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Figure 3.5 plots of the normalized rotation

divided by the weight function, [1-(y/a)2] 1/2 for

plate bending for a/h=lO,lO0,1000 from Reissner's

theory compared to classical theory, y=-.3

p(y/a) : (a/h) (_/E)f(y/a) [1-(y/a) 211/2
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Figure 3.6 The ratio of crack surface rotation for

Reissner's theory to that of the classical theory
at the center of a cracked plate subjected to

bending, v=.3. See also Table 3.2.
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Figure 3.7 Bending stresses in front of the crack

tip for a/h=.5,10, v=.3
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Figure 3.Sa,b Geometry of the double crack for (a)
unequal length and (b) equal length cracks.
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CHkPTBR 4

Part-Through Cracks in Plates

The singular integral equations for part-through crack problems

are obtained directly from the corresponding through crack equations

combined with the compliance relations of Chapter 2. The edge crack

SIFs needed for these relations are derived and presented in Appendix

C. All line-spring model (LSM) solutions presented in this section

are normalized with respect to the edge crack solution for the

corresponding loading and crack depth at the center of the given part-

through crack, see section C.4 of Appendix C.

4.1 Mode 1.

From Eqns. 3.102,118, 2.31, and from the superposition of Fig.

2.4, the integral equations for the sy_etrically loaded part-through

crack are,

_L ul(t)
(t-y) 2

n

u2(t)

_(1-v2) _gn (t_y)2_ 2

dt - 711ul(Y) - 712u2(Y) = -_x ± -_1 ' (4"11

where

5 1 f u2(t)K(z ) dt
dt + 12(l+v) 2_ L

n

-712u1(Y) - 722u2 (y) = -_x = -_2/6 '

z = psu-ys 11

K(z) = + 4 4Ko(z) + 4](2(z ) +-22
z z _.

(4.2)

(4.3)

(4.4)
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This problem has already been solved for a Reissner plate [48].

The early line-spring model stress intensity factor solutions utilized

the classical plate bending theory which in Chapter 3 was shown to be

inadequate for through crack stress intensity factor determination.

Recall that the LS_ provides stress intensity factors along the crack

front of a surface crack such that -a<y<a, while the solution to a

through crack gives the SIF at y=_a. For the classical formulation,

Eqn. 4.2 is replaced with,

3+v u2 (t)_ dt - 712ul(Y) - 722u2(Y) = -_ (4.5)l+v o. L (t-y)2 x'
n

while Eqn. 4.1 slays the same. It was also shown in Chapter 3 that

for large a/h the Reissner plate bending rotation approaches that of

the classical solution except at the endpoints, see Figs. 3.4-6 and

table 3.2. Since the LSM does not use the solution at the endpoints,

it is expected that for long cracks, the classical and Reissner

theories become identical. This is shown in Figs. 4.1-4 where the LSM

for both theories is compared to the 3-D Finite element solution of

Newman and Raju, [33], see also [43]. In these figures Kit and Klb

correspond to the edge-cracked strip SlF solution for tension and

bending respectfully. For a/h smaller than about 2, which is the

realistic geometry range for part-through cracks, the transverse shear

theory shows significant improvement over the classical theory. For

larger a/h it seems that the extra expense of integrating the Fredholm

kernel, Eqn. 4.4, is unnecessary. Also as a/h gets larger, the

numerical solution of 4.1,2 gets more difficult. With regard to table
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3.2, it is rather surprising that the classical theory gives such good

results for a/h as small as 2. Probably the reason is that tension,

which is the same for both theories, dominates the behavior of the

solution. Otherwise the difference would be of the order of 10_ for

a/h as high as 7.

In tables 4.1-10a,b the normalised SIFs along the crack front for

both rectangular (a) and semi-elliptical (b) cracks are listed for

tension and bending. The value of the normalized SIF at the center of

a semi-elliptical crack for various crack lengths and depths is given

in table 4.11 and the effect of Poisson's ratio on this quantity is

shown in table 4.12. The only difference between this solution and

the previous solutions which use Reissner plate theory [48] is the

compliance functions, i.e. 7i j of Eqns. 4.1,2. For _.8 the curves

used here, Eqns. C.102 with coefficients listed in table C.2, are

slightly more accurate, see Bqns. C.108,109. This improved accuracy

is minimized after going through the solution process because of

normalization such that the results of tables 4.1-10 differ from those

using Bqns. C.102 by at most .002, an insignificant amount considering

the approximate nature of the model. The contribution given here is

for deep cracks, i.e.

co_npliance curves can

match the asymptotic

.8<{!.05. As noted in Appendix C, the

actually be extrapolated to {=1 because they

behavior given by Benthem and Koiter [65].

Although the values in these tables for crack depths of .9 And .95 are

small, the normalization factor, which is the corresponding stress

intensity factor for the edge-cracked strip, is very large. Tables

4.13,14 list the stress intensity factors at the maximum penetration
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point

solution of the

(4.13a,14a) and

.2 (4.13b,145).

of a semi-elliptical crack normalized with respect to the

edge-cracked strip for both the corresponding depth

for comparative purposes, with respect to a depth of

The results for tension, table 4.13, show that the

driving force, (dimensional SIF), does not simply increase with crack

depth like the solution for the edge crack. For bending, table 4.14,

the driving force is maximum for shallow cracks because of the

constraining effect of the ends which actually causes interference and

negative SIFs for deep cracks as discussed in the next section.

4.1.1 Contact Bending

The boundary conditions of the bending through crack problem

m

specify the crack surface loading, a 2. This can only be satisfied if

tension is applied (superimposed) to open the crack to prevent

interference due to bending rotation. The crack opening displacements

due to tension and bending loads are such that contact will first

occur at the ends of the crack, therefore the condition for no contact

is satisfied if the combined stress intensity factor (tension plus

bending component) at the corner on the compressive side of the plate

is zero. The necessary ratio of tension to bending is

-->°l kl (h/2) (4.6)

02

where the subscript D refers to dimensional.

There is a similar problem with bending of a part-through crack.

As can be seen from tables 4.1-10a,b, the stress intensity factors due
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to bending change sign as the crack gets deeper. Since a negative SIF

has no meaning, these solutions require a superposition of a tensile

solution to make K/Kob_O. The contact curve for the through crack

®
case where gI is zero in Eqn. 4.6, can be obtained from the line-

spring model by finding the K/Kob=O curve. Along this curve, imagined

to be a crack front, the crack opening displacement is cusp shaped.

This solution is obtained by an iterative process where the ncrack

depth" L(y)/h, is the unknown and the condition

K = _'h'_[algl(y ) + a2g2(y) ] = 0 ,

is used to determine it.

given in table 4.i5. A

reduction in the stress

with interference, see Fig. 4.5. The line-spring model can be used to

approximate this quantity as shown in the next section.

(4.7)

These curves for various a/h values are

more useful problem is to determine the

intensity factor at the corner for bending

4.1.2 Usin 6 the LSM to Calculate SIFs at the Corners

In the development of the line-spring model, the net ligament of

the part-through crack is replaced with "net ligament" stresses. In

solving the problem these strcsses are determined. There is no

difference between this problem and a through crack problem with these

net ligament stresses applied as additional crack surface loads.

Therefore in the same way that SIFs are calculated for a through

crack, SIFs at the corners of a surface crack, i.e.y.=_a, z=h/2 can be

calculated and with no extra work. The problem with this idea is that

close to the endpoints the net ligament stresses as provided by the

89



model are not accurate and this has a significant effect on the crack

tip stress intensity factors.

As discussed in Chapter 2, section 2.3 and in Appendix C, the

crack shape controls the endpoint behavior. For example the net

ligament stresses are forced to zero at the ends of a rectangular

crack yet have a square root singularity in the case of a semi-

ellipse. In Appendix F it is shown that for the ellipse the stress

intensity factor at the corner as predicted by the LSM is zero.

Numerically this could not be shown but the results indicate a

diminishing value as more terms are taken in solving the integral

equation. The only crack profile that will make the net ligament

stresses finite is the 1/4 power curve, i.e.

L(y)/h = { = {0(1-82) 1/4 (4.8)

The technique of section 2.3, presented again in Eqns. 4.0,10, where

this behavior is imposed at the ends of the crack profile in order to

get well behaved net ligament stresses, d_d not work. The corner

stress intensity factor was too sensitive to M, the number of terms in

the series giving the crack profile:

(0(1-s2) 1/4h (s) , (4.0)= _0(1-s2) n

where

M

h(s) z (l-s2) n-114"
_- ais

i=O

(4.10)

Probably the best geometry for approximating the corner stress

intensity factor is one for which crack depth at the end is non-zero.

In this case as noted previously the net ]igament stresses as
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predicted by the line-spring model go to zero at the endpoints. Since

the net ligament stresses restrict the crack from opening, the error

of the method should overestimate the correct value of the SIF. Note

that the "actual" net ligament stresses (normalized with respect to

the stress at "infinity H) are probably between zero (for deep cracks)

and one (for shallow cracks), while the normalized applied

perturbation load is negative one.

The simplest problem that satisfies this geometry condition is

the rectangular crack. The tension and bending cases are given in

Fig. 4.6 as a function of the crack depth for a/h=1. Note that as the

crack depth goes to one, the through crack value is approached in a

manner similar to the case when two collinear cracks approach each

other where behavior at the outer crack tip resembles that of one long

crack instead of two, see Figs. 3.1a-d. In Fig. 4.7 plots similar

to those of Fig. 4.6 are presented for the crack shape given in Eqn.

4.8. This figure is included only for purposes of comparison.

The contact problem of the last section also satisfies the

condition of non-zero crack depths at the ends. Results for the

"corrected" bending stress intensity factor are presented in Fig. 4.8.

This plot shows how the interference of bending reduces the stress

intensity factor from the value calculated when Eqn. 4.6 is assumed to

be satisfied.

This method is of course very approximate. From the results of

Fig. 4.6 it seems as though the tension case is wrong because the

stress intensity factor exceeds the through crack value of one. This

is due to the contribution from induced bending. It is conceivable
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that at the corner opposite the constraint, crack growth is more

likely than without the constraint although total failure of the plate

is less likely. In Newman's finite element results, [33], there are

some geometries where this occurs but only by about 2_ ( k(h/2)/a_

=1.023 for a/h=.4, Lo/h=.8), not the 20_ that is calculated here,

although it should be noted that the semi-ellipse has a constraining

effect on the corner that the rectangle does not. I believe that the

trend is correct, however the result should be considered only

approximate.

Perhaps a method for approximating the value of the SIF at the

corner of a semi-ellipse, or for any other profile, is to use the

rectangular crack that has an equal _mount of net ligament as the

shape being considered. This simply results in a shift along the Lo/h

axis of Fig. 4.6. For the semi-ellipse this shift factor which

results from equating the area of an ellipse to that of a rectangle

is:

(Lo/h) rectangle = (x/4) (Lo/h) semi-ellipse (4.11)

In Fig. 4.9 this shifted curve is presented along with some

corresponding values from Ref. [33]. These results are quite close

but for some other geometries the method does not predict such good

agreement. One would think that the model would predict an upper

bound because the material is redistributed away from the ends and

placed in the central portion. This should allow the crack to open

more therefore increasing the SIF. This is observed in most, but not

all cases. Especially for shorter crack lengths, say a/hgl, does this
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reasoning fail. For large a/h the approximation in somecases

overestimates the finite element value by as muchas 50_.

Part of the problem with this method is in the interpretation of

the SIF obtained. In a plate theory the stress distribution, and

therefore, the stress intensity factor distribution, through the

thickness is assumed, see Appendix G. The value of the SIF that is

being attributed to the corner is actually the sumof the tension

component (constant through the thickness) and the bending component

(linear). To expect good results for a semi-ellipse is wishful

thinking. In fact, the elasticity solution of Benthem [I] indicates

that at a free surface, the SIF is zero for modeI. It is interesting

to note that the values obtained from this method comparerather well

to the results by Mattheck et. al. [41] where the Scorner w SIF is

averaged in order to get a general idea of the surface crack to grow

outwards. Comparison is good for all geometries given in this

reference. Perhaps the interpretation of the LSM approximation should

also be regarded as an average, especially taking into account the

results from Benthem. More work needs to be done to use the model to

investigate this problem.

Theocaris and Wu [53,54] have devised a technique which uses the

I,SM and classical plate theory to obtain the SIF distribution over the

entire range, including the corner. To obtain the value at the

corner, they equate the SIF from the LSM (which is in a plane

perpendicular to the plate surface) to the SIF from the plate with a

through crack (which is in a plane parallel to the plate surface).

They assume the semi-elliptical crack profile has some small, non-zero
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depth at the endpoint which is measured experimentally. The

shortcoming of this method, besides assuming that there is a

displacement at the endpoint, is that the classical plate theory is

used which is inadequate to solve for through crack SIFs that involve

bending as the part-through crack problem always does. This same

technique cannot be applied to the Reissner plate because of

convergence problems. Theocaris and Wu have solved the integral

equations in closed form so this difficulty is overcome [53].

4.1.3 Double Cracks

Crack interaction introduces more of a three-dlmensional nature

to the problem. For through cracks the plate theory should be

accurate for crack tip separations of the order of the plate

thickness. The justification for letting the cracks get closer

together comes from asymptotic properties of the theory that for

example are correct in terms of elasticity theory for small cracks,

i.e. a/h approaching zero. The part-through crack problem is

different. The model is inaccurate near the end, both along the crack

front, and in terms of its influence on the solid at lyl>a as shown in

the last section. Note that essentially the singular stress field

causes the interaction. The contribution from the Fredholm kernel is

secondary, especially at small separations where the problem is most

interesting.

For the semi-ellipse, the most studied geometry in the

literature, it was shown in Appendix F that a singular stress field

does not exist, although numerically this is nearly impossible to show
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because of convergence difficulties. This meansthat numerically

there will be a singular stress field. Therefore the crack

interaction problem for this crack shape cannot be properly solved.

In table 4.16 the tension solution to two symmetrically positioned

surface cracks is presented. The geometry of the problem is shown in

Fig. 3.8b. Results for both the semi-ellipse and the 1/4 power curve

of Eqn. 4.8 are included in this table. The difference in the

behavior of the solution for two nearly similar crack shapes, for -.98

<s<O, shows that the line-spring model does not predict the correct

trends. The semi-ellipse has a SIF that is nearly constant, whereas

the other curve varies considerably. For a larger separation it

should not be expected to be nearly as accurate as for a single crack.

Perhaps

accurate.

bending

Ref. [59].

the SIF in the center of the crack will be reasonably

Results for a semi-elliptical crack under both tension and

are given in table 4.17. These results can also be found in

4.2 Modes 2 and 3

From Eqns. 3.168,179,180, 2.31, and from the superposition of

Fig. C.1, the integral equations for the skew-symmetrically loaded

part-through crack are:

-- dt _ u3(t)K33(z ) + Us(t)K35(z)} dt -
2_ a (t-y) 2 + a

- 733u3(Y) = -_x = -8(1+y)/5 _3 ' (4.12)
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1 _b u4(t)_ = ®
a (t-__y)2 dt - 744u4(Y) - 745u5(Y) = -_xy -04 '

(4.13)

21
7( 1-v )_ ;b u5(t )

a (t-y) 2
I (u5(t)K55(z) + u3(t)K53(z)) dtdt + _ fb

a

- 754u4 (y) - 755u5 (y) = -_xy = -_5/6 ' (4.14)

where

z=plt-yl, a<y<b , (4.15)

K33(z) = p2I_in(z)+ [K2(z) _ -22 ] + [KO(z) + In(z)]) ,
Z

(4.16)

+4K +

z

(4.17)

K55 (z) - 12(1+u){ ln(z) + 4 + 4Ko(z) 4K2(z) 242 - - -2 K2(z)
Z Z

+ ln(z)]- [2Ko(z)+ 2In(z)] ) , (4.18)

K53 (z) 12(l÷v)_ ---_+
Z

Again it is noted that in crack propagation studies this solution may

be used only if the crack grows in its own plane. Results for crack

lengths of a/h = .5, 1., 2., 4., and crack depths of Lo/h = .2, .4,

.6, .8, .9, .95 are given in tables 4.19-21a,b for rectangular (a) and

semi-elliptical (b) cracks for out-of-plane shear, in-plane-shear and

for twisting. Because there are two stress intensity factors (modes

2,3), normalization will be with respect to the primary value obtained

from the edge-cracked strip at the maximum depth, see section C.4 of

Appendix C. In the tables and figures this normalization factor will

be denoted by K20, K3IO, and K3TO for out-of--plane shear, in-plane
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shear, and twisting, respectively. Profiles of the SIFs for a/h=l,

y=.3 are given in Figs. 4.10-15. Note that because of the symmetry of

the problem the secondary stress intensity factor at the center of the

crack is zero. When the primary loading is mode 3, (twisting or in-

plane shear), out-of-plane crack growth which results from mode 2

contributions is minimized in the central portion of the crack front.

The model also shows that the secondary value is insignificant

throughout the range. For the rectangular crack this is expected, but

for the semi-ellipse this should not be the case. As in the mode 1

problem for which the model works well, it can only be hoped that the

inaccuracies towards the ends do not significantly affect the solution

in the center. The value of the SIF at the center of a semi-

elliptical crack is listed in table 4.22 for various crack lengths and

depths for all loading cases. The closer the value in these tables is

to one, the closer the conditions are to plane strain. For the

loading case of out-of-plane shear, plane strain conditions are more

easily met than in the mode 1 cases of tension and bending, which are

4.11. The opposite is true for inplane shear and

effect of Poisson's ratio on the solution is shown in

shown in Table

twisting. The

table 4.23.

The method

semi-elliptical

applied here.

of approximating the value of the Wcornern SIF of a

crack used in Sec. 4.1.2 for the mode 1 case is

The results are given in table 4.24. As discussed in

Appendix G, the work of Benthem [1] shows that at a free surface the

stress singularity for shear (modes 2 and 3) is greater than .5. The

plate theory used predicts a zero value for the mode 3 SIF at the
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surface because of the assumedparabolic shear distribution, when in

fact it should be infinite. Therefore as with the mode1 prediction

the numbersobtained from this method should be regarded as an average

value that gives someidea of outward crack growth.
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Table 4.1a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=.5, v=.3

y/a
O.
.1
.2
.3
.4
.5

6
7
8
9
95
98

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

.784 .428

.783 .427
.779 .423
.773 .417
.762 .407
.747 .393
.724 .374
.688 .348
.631 .311
.523 .253
.417 .205
.301 .157

.193 .0595 .0206 .00767
192 .0594 .0205 .00765
190 .0588 .0203 .00756

187 .0579 .0199 .00741
183 .0565 .0194 .00719
177 .0545 .0186 .00689
169 .0519 .0176 .00648

158 .0484 .0162 .00593
142 .0432 .0143 .00515
118 .0345 .0111 .00392

•096 .0267 .0083 .00290
•071 .0182 .0055 .00190

Rectangular crack, Bending.

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

.765 .339 .0620

.764 .338 .0614

.760 .333 .0594

.752 .326 .0561

.741 .314 .0513

.724 .298 .0447

.699 .277 .0361

.660 .247 .0249

.598 .205 .0102

.480 .139 -.0091

.366 .087 -.0201

.239 .038 -.0237

-.0308 -.0236
-.0309 -.0236
-.0312 -.0235
-.0316 -.0234
-.0322 -.0232
-.0329 -.0229
-.0337 -.0223

-.0342 -.0214
-.0339 -.0196

-.0308 -.0161
-.0258 -.0125
-.0187 -.0085

-.0121
-.0121
-.0120
-.0119
-.0117
-.0113
-.0109
-.0102

-.0091
-.0072
-.0054
-.0036
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Table 4.1b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=.5, v=.3

Seml-elllptical crack, Tension.

y/a
O.
.1
.2
.3

.4

.5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

729 .390 .174 .0499 .0158 .00547
728 .390 .174 .0500 .0159 .00546
724 .388 .174 .0503 .0160 .00547
717 .385 .173 .0507 .0163 .00554

708 .381 .172 .0512 .0166 .00567
695 .376 .169 .0515 .0170 .00583

.677 .369 .166 .0514 .0173 .00598

.654 .361 .162 .0506 .0173 .00603

.622 .351 .157 .0484 .0166 .00584

.571 .342 .152 .0452 .0151 .00525
.526 .340 .153 .0440 .0142 .00485

.474 .347 .163 .0460 .0145 .00484

Seml-elllptlcal crack, Bending.

O.
.1
.2

.3
4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

.709 .306

.709 .307

.709 .310

.708 .316

.706 .324

.704 .335

.699 .348
.692 .364
.678 .385
.649 .413
.616 .437
.569 .467

.053 -.0281 -.0198 -.00960

.055 -.0273 -.0194 -.00934

.059 -.0249 -.0182 -.00867

.066 -.0208 -.0164 -.00776
.076 -.0151 -.0139 -.00667
.089 -.0077 -.0107 -.00539

105 .0018 -.0067 -.00383
124 .0132 -.0017 -.00189
147 .0269 .0044 .00054

178 .0432 .0117 .00347
202 .0542 .0162 .00519
233 .0661 .0205 .00675
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y/a
O.
.1
.2
.3
.4
.5
.6

.7

.8

.9

.95

.98

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95

.98

Table 4.2a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=l , v=-.3

Rectangular crack, Tension•

Lo/h .2 •4 .6 .8 .9 .95

• 864 .561

863 .559
861 .555
857 .549
850 .538
840 .523
825 .502
800 .471
755 .425
655 .347

541 .279
399 .208

.273 .0844 .0293

.273 •0841 .0292

.270 .0833 .0289
266 .0819 .0284
259 .0798 .0277

251 .0769 .0266
239 .0731 .0252
222 .0679 .0233
199 .0605 .0205
163 .0487 .0161
132 .0382 .0123

.098 .0266 .0083

0112
0112
0111
0109

0106
0!01
0095
OO88
0077
OO59
0O44
0030

Lo/h

Rectangular crack, Bending.

2 4 _ ° n• • .U ,0 ._ .95

852
851
848
844
837
826

809
782
733
624
500
345

492 .153 -.0101 -.0210 -.0128
490 .152 -.0104 -.0210 -.0128
486 .149 -.0111 -.0211 -.0128

478 .145 -.0122 -.0213 -.0128
466 .137 -.0140 -.0216 -.0128
448 .127 -.0162 -.0218 -.0127
424 .114 -.0192 -.0221 -.0125
389 .096 -.0227 -.0222 -.0121
336 .071 -.0267 -.0218 -.0114
246 .033 -.0297 -.0195 -.0096
169 .006 -.0283 -.0161 -.0076
091 -.013 -.0227 -.0115 -.0052
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Table 4.2b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , v=.3

Seml-elllptlcal crack, Tension•

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

Lo/h .2 .4 .6 .8

•817
.816

810
800
786
766

740
706
657
581
513

•438

.507 •244 .0725
•506 •244 .0726

503 •243 .0727
498 .242 .0730
491 .239 .0731
481 .236 .0731
469 .231 .0725
452 .225 .0712

.431 .217 .0687

.401 .207 .0654

.379 .203 .0644

.359 .205 .0665

.9 .95

.0235 .00833

.0235 .00830

.0236 .00825
.0238 •00825
•0240 .00830
.0242 .00838
.0243 .00842
.0240 .00835
.0232 •00807

.0218 •00752
.0213 .00726
.0219 •00742

Seml-elllptlcal crack, Bending•

y/a
O.

.1

.2

.3

.4

.5

.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 •9 .95

•804
804
8O2
798
792
783
771
752

722
665

• 606
• 531

441
441
444
449
455
463

•472
•482
•492

•499
• 500
.496

•133 -.0114 -.0186 -•01064
.134 -.0102 -•0180 -•01023
.139 -.0068 -.0161 -.00914

.147 -.0012 -.0131 -.00763

.158 .0065 -•0093 -.00585

.172 .0163 -.0045 -.00382

.189 .0280 .0010 -.00152

.208 .0415 .0073 •00107

.231 .0568 .0145 .00398
.259 .0747 .0225 .00719
.280 .0867 .0275 .00911

.302 .0996 .0325 •01096
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Table 4.3a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=l , u=.O

Rectangular crack, Tension.

O.
.I
•2

.3

.4

.5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 •9 •95

838
837
835
831
824
814
799
774

729
• 630
.519
.381

521 .254 .0815 .0290 .0112
520 .253 .0813 .0289 .0111
516 .251 .0804 .0286 .0110
510 .247 .0791 .0281 .0108
500 .241 .0771 .0273 .0105
AQ_v7 .233 .0743 .0262 .0100
468 .222 .0705 .0247 .0094
440 .208 .0654 .0228 .0086

•398 .186 .0582 .0200 .0075
•326 .153 .0467 .0156 .0057
•262 .124 .0365 .0119 .0043
.197 .092 .0253 .0080 .0028

Bectangular crack, Bending•

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

824
823
820
816
809

798
781
754
7O5
597
476
326

.446 .130 -.0123 -.0198 -.0118
444 .129 -.0125 -.0199 -.0118
440 .127 -.0132 -.0200 -.0118
433 .122 -.0143 -.0202 -.0118
422 .116 -.0159 -.0204 -.0117
406 .107 -.0180 -.0207 -.0117
384 .095 -.0207 -.0210 -.0115
352 .079 -.0239 -.0211 -.0112

.303 .056 -.0275 -.0207 -.0105
.221 .023 -.0298 -.0185 -.0089
.150 -.001 -.0280 -.0153 -.0070
.079 -.017 -.0221 -.0109 -.0048
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Table 4.3b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , u=-.O

Seml-elllptlcal crack, Tension•

O.
1

2
3
4
5
6
7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8

.791
•790
•785
.776

764
747

724
693
649
578
515

•442

.473
•472
•470
.466
.460
.451

441
428
410
387
369
355

•228
•228
•227

225
222
219
214
208

200
192
190

• 194

.0699

.0699
0699
0699
0697
0692
0682
0663
0635

0600
0591
0613

.9 .95

.0232 00829
0232 00825
0232 00817

0233 00813
0236 00814
0234 00815
0232 00812

.0227 .00797
.0217 .00759
.0201 .00695
.0195 .00665

.0200 .00678

Seml-ell_ptlcal crack, Bending•

O.

1
2
3
4
5
6
7
8
9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

.776 .401

.776 .402

.774 .405

.771 .410

.768 .417
762 .427
752 .438
737 .450
712 .465
661 .479
607 .486
535 .488

113 -.0129 -.0174 -.00966

I15 -.0119 -.0168 -.00931
119 -.0089 -.0152 -.00838
126 -.0039 -.0127 -.00710
137
150
166

186
209
239
261
286

0029 -.0094 -.00558
0116 -.0052 -.00383
0222 -.0003 -.00182
0347 .0054 .00052
0491 .0121 .00320
0665 .0197 .00625
0785 .0246 .00812
0914 .0295 .00992
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y/a
O.

1
2
3
4
5
6
7
8
9
95
98

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

Table 4.4a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=l , v=-.5

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

.891 .615

.890 .613

.888 .609

.885 .602
.879 .591
.870 .575
.856 .552
.833 .519
.791 .469
.695 .383

.580 .307

.431 .228

.308 .0927

.307 .0924

.304 .0915

300 .0899
292 .0876
282 .0844
268 .0802
249 .0744
223 .0664
181 .0536
146 .0423
109 .0297

.0314

.0313

.0310
0305

0297
0286
0271
0251
0222

.0176
.0136
.0092

.0119
0119
0118
0116
0113

0108
0102
OO94
0083
0065
0049

.0033

Rectangular crack, Bending.

Lo/h .2 .4 .6 .8 .9 .95

881
881
879
874
868
858
843
819
773
667
542
380

554
553
548

540
527
508
482
444
387
288
201

.113

.194 -.0024

.193 -.0027
189 -.0035

184 -.0049
175 -.0070
164 -.0097
148 -.0133
127 -.0177

.098 -.0229

.053 -.0279

.O20 -.0280
-.O06 -.0234

-.0206
-.0207
-.0208
-.0210
-.0214
-.0219

-.0223
-.0226
-.0225
-.0206
-.0173
-.0126

-.0136
-.0136
-.0136
-.0136
-.0136
-.0135
-.0134

-.0131
-.0123
-.0105
-.0084
-.0058
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Table 4.4b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , u=-.5

Semi-elllptica I crack, Tension.

Lo/h .2 .4 .6 .8

y/a
O. .848 .554 .273 .0789
• I .845 .553 .273 .0799
•2 .839 .549 .272 .0802
•3 .828 .543 .270 .0807

•4 .811 .534 .268 .0811
.5 .789 .522 .264 .0814
.6 .759 .506 .259 .0812
.7 .720 .485 .251 .0801
.8 .666 .457 .241 .0778

.9 .582 .417 .227 .0742

.95 .509 .387 .219 .0727

.98 .429 .358 .217 .0741

.9 .95

.0254 .00895

.0255 .00892

.0256 .00888
.0259 .00891
.0263 .00900

.0266..00912

.0269 .00924

.0268 .00924
.0262 .00904
.0249 .00855
.0242 .00830
.0248 .00846

Seml-elllptlcal crack, Bending.

Lo/h .2 .4 .6 .8

y/a
O. .837 .496
.1 .836 .496
.2 .833 .499 .174
.3 .828 .502 .182

.4 .820 .507 .193

.5 .809 .512 .208
.6 .793 .518 .225
.7 .769 .523 .244
.8 .733 .527 .265
.9 .667 .523 .289
.95 .602 .513 .305
.98 .521 .497 .322

.9 .95

.167 -.0052 -.0188 -.01147

.169 -.0039 -.0180 -.01097
.0001 -.0157 -.00964
.0066 -.0122 -.00782
.0154 -.0076 -.00567
.0263 -.0022 -.00326
.0392 .0041 -.00061

.0538 .0112 .00231

.0699 .0188 .00545

.0880 .0271 .00881

.0996 .0322 .01078

.1119 .0372 .01266
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w

y/a
O.
.1
.2
.3
.4
.5

.6

.7

.8

.9

.95

.98

y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

Table 4.5a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=l.5 , y=.3

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

•899
898
897
893
888
88O
868
849

813
727
617

•465

639 .333 .1037 .0357 .0137

638 .332 .1034 .0355 .0136
634 .329 .1024 .0352 .0135
627 .324 .1006 .0346 .0132
616 .317 .0981 .0337 .0129
601 .307 ,0946 .0324 .0124
580 .292 .0898 .0307 .0117
549 .272 .0832 .0283 .0107
500 .244 .0739 .0250 .0094

.413 .198 .0592 .0196 .0073

.332 .159 .0465 .0151 .0055

.246 .118 .0327 .0103 .0037

Lo/h

Rectangular crack, Bending.

9 .4 g Q
*_ .v *v .9 n_:

.890 .582

.889 .581

.887 •576

.884 .568

.878 .556
.870 .539
.857 .514
.836 .478
.797 .422
.702 .322
.582 .230
.417 .133

•222 .0084 -.0173
221 .0081 -.0174
218 .0072 -.0176
212 .0056 -.0179

203 - .0032 -.0184
192 .0000 -.0191
175 -.0042 =.0199
153 -.0098 -.0207
121 -.0169 -.0214

.071 -.0251 -.0208

.032 -.0276 -.0182
-.000 -.0245 -.0136

-.0126
-.0126
-.0126
-.0127
-.0127
-.0128
:.0128

-.0127
-.0123

-.0109
-.0090
-.0064
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Table 4.55 Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l.5 , v=.3

Seml-elllptlcal crack, Tension.

y/a
O.
.I
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

Lo/h .2 .4 .6 .8

•858
•856
•849
•837
•820

797

767
726
670
582
5O6

422

.577

.576

.571
•564

554
541
523

5OO
469
424
389
352

.295 .0895

.294 .0895
293 .0897
291 .0899
287 .0900
282 .0898
276 .0890

267 .0873
254 .0844
238 .0801
227 .0781

.221 .0786

.9 .95

•0291 .0104
.0291 .0103
0292 •0102
0294 •0102
0296 .0102
0298 .0103

0298 .0103
0295 .0102

.0286 .0099

.0271 .0094

.0264 .0091

.0268 .0092

Semi-elllptlcal crack, Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

•848
•847

•844
•838
•830
.818
.801
.776
•738
.669
•600
.513

.521
•522
•524
•527

.531
•535

540
543
544
535
519
493

.191
• 193
.198
•206

217
231

247
265
285
307
320
331

.0040 -.0162 -.01078
.0054 -.0153 -.01025
.0095 -.0129 -.00884
.0161 -.0092 -.00690
0251 -.0044 -.00463
0362 .0013 -.00211
0491 :0077 .0D063
0636 •0148 .00358
0795 .0224 .00673
0974 .0307 .01009

.1087 .0358 •01207

.1200 .0407 •01394
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¢

y/a
O.
.1
.2
.3
.4

.5

.6

.7

.8

.9

.95

.98

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Table 4.6a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=2 , v=.3

Rectangular crack, Tension•

Lo/h .2 .4 .6 .8 .9 .95

920
920
918
915
910

9O3
893
877
847
772
669
515

693 •382 .120 .0408 •0155
692 .381 •120 •0407 .0155

688 .378 •119 .0403 •0153
681 .373 .117 .0396 .0151
671 .364 .114 .0386 .0147
656 .353 .!!0 .0372 .0141
635 .337 .104 .0353 .0134
604 .314 .097 .0326 .0123
555 .282 .086 .0287 .0108
464 .228 .068 .0225 .0083
375 •182 •053 •0173 •0063
277 .134 .038 .0118 .0042

Rectangular crack, Bending.

Lo/h .2 .4 •6 .8 •9 .95

.913

.912

.910

.907
• 902
• 895
• 884
•866
•834
•752
•640

•472

.645 .279 .0254 -.0136 -.0121

.644 .278 .0250 -•0137 -•0121

.639 .274 .0239 -•0140 -•0121
.631 .267 .0220 -.0144 -.0122
.619 .258 .0192 -.0151 -.0123
.602 .245 .0152 -.0159 -.0124
.577 .226 .0100 -.0171 -.0126
.542 .201 .0029 -.0185 -.0127

.485 .164 -.0066 -.0202 -.0126

.380 .105 -.0193 -.0210 -.0117

.279 .056 -.0254 -.0194 -.0100

.168 .013 -.0252 -.0151 -.0073
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Table 4.6b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=2 , u=-.3

Seml-elliptlcal crack, Tension.

y/a
O.

1
2
3
4

5
6
7
8
9
95

98

Lo/h •2 •4 •6 •8 .9 •95

.883 •627 •336 .104 •0336 •0120
•880 .625 •335 .104 .0337 .0119
.873 .620 .333 .104 .0338 .0118
.860 .611 .330 .104 .0340 .0118
:841 .598 .326 .104 .0343 .0118
.815 .581 .319 .104 .0346 .0119
.781 .558 .310 .103 .0346 .0119
.737 .530 .298 .101 .0342 .0119

•676 .491 .281 .097 .0332 .0115
.582 .435 .258 .091 .0314 .0109
.501 .390 .241 .088 .0304 .0105
.413 .344 .227 .086 .0303 .0105

Seml-elllptlcal crack, Bending•

y/a
O.
.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h • 2 .4 .6 .8 .9 .95

• 875
874
870
863
852
838

818
•789
•746
• 670
•595
•503

578 .239 .0180 -•0135 -.01066
579 .241 .0196 -.0125 -.01002
580 .245 .0242 -.0097 -•00834
581 .253 .0316 -•0054 -•00604
582 .264 .0416 .0001 -.00338
584 .277 .0536 .0066 -•00481
584 .291 .0672 .0136 •00259

.582 .307 .0822 .0212 •00580

.575 .323 .0981 .0291 •00911

.553 .338 .115 .0374 .0125

.525 .343 .125 .0422 .0144

.485 .344 .133 .0465 .0162
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y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

y/a
O.
.1

.2

.3

.4

.5

.6

.7

.8

.9

.95
.98

Table 4.?a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=3 , _-.3

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .0 .95

944
944
942
940
936
930
922
909

886
827
738
588

766 .461 .150 .0495 .0184
765 .460 .149 .0493 .0183

761 .456 .148 .0489 .0182
754 .449 .146 .0481 .0179
743 .430 .142 .0470 .0175
729 .426 .137 .0453 .0169
708 .407 .130 .0431 .0160
678 .382 .121 .0390 .0148
630 .343 .107 .0351 .0130
537 .279 .085 .0274 .0100
440 .222 .066 .0209 .0075
327 .162 .046 .0142 .0051

Lo/h

Rectangular crack, Bending.

.2 .4 .6 .8 .9 .95

939

939
937
934
930
924
915
901
875
811
715
551

729
727
723
715
7O3
686
662
627
572
465
354
224

•370
.369
.365
.357
.346
.330
308
279
235
162
099
038

0565
0560
0545
0520
0484

0433
0364
0270
0i38

-.0060
-.0188
-.0245

- 0065

- 0066
- 0069
- 0075
- 0084
- 0096
- 0112
- 0135
- 0165
- 0199
- 0203
- 0172

-.0108
-.0108
-.0109
-.0110
-.0111
-.0114
-.0117
-.0121
-.0125
-.0125
-.0113

-.OO87
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Table 4.7b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=3 , v=.3

Seml-elllptical crack, Tension•

O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8

.913 .695
910 .693
901 .685
886 .673
865 .656
836 .633
798 .603
749 .565
682 .515

.581 .444

.495 .387

.402 .330

400 .128
399 .128
396 .128
392 .129
384 .130
374 .128
360 .127

.341 .123

.316 .117

.281 .108

.254 .101
.228 .095

.9 .95

.0411 .0144
•0412 •0144
.0415 .0143
.0419 .0144
.0424 .0145
.0428 .0147
.0429 .0148
.0424 .0147
.0410 .0143
.0383 .0134
.0362 .0127

.0348 .0123

Seml-elllptlcal crack, Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 •6 .8 .9 .95

•907
.905
.900

891
879
861
837
803
754
670
589
492

657
657

656
654
651
647
639
628
6O8
569
527

•470

.315

•316
320
327
226
346

357
367
374
375

•367
•351

.0434 -.0081 -.01004
0452 -.0069 -.00924
0506 -.0034 -.00713
0591 .0019 -.00424
0703 .0086 -.00095
0834 .0161 .00254
0977 .0241 .00611

.113 .0323 .00966

.127 .0403 .0131

.140 .0479 .0164
.146 .0516 .0179
.149 .0542 .0192
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Table 4.8a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending

loads, a/h=4 , v=-.3

Rectangular crack, Tension.

y/a
O.

.1

.2

.3
4
5
6
7
8

9
95

.98

Lo/h .2 .4 .6 .8 .9 .95

957
957

956
954
950
946
938
927
907
858

782
• 639

812 .523
811 .521
807 •517
800 .510
790 .499
776 .484
756 .463
726 .434
680 .392
588 .321

489 .255
.366 .185

• 176 •0571 •0207
176 .0569 .0206
174 •0564 .0205

171 .0555 .0202
167 .0542 •0197
161 .0524 .0191
153 .0499 .0182
142 .0463 .0169
126 .0408 .0149

.099 .0318 .0114

.076 .0240 .0085
.053 .0162 .0057

Rectangular crack, Bendlng.

y/a
O.
.1
.2
.3
.4
.5

.6

.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

•954 .782
.953 .781
•952 .776
.950 .769
.946 .757
.941 .741
.933 .717
.920 .683
.899 .629
.846 .524
.762 .410
.607 .268

•442
•440
435
427
414
397
373
340
291
209
136
062

.0852 .00057 -.0093

.0846 .00043 -.0093

.0828 -.00001 -.0094

.0797
0752
0690
0607
0493
0332
0078

- 0107
-.0223

-.00077 -.0096
-.00188 -.0098
-•00340 -.0101
-•00545 -.0106
-.00825 -•0111
-.0122 -•0119
-.0177 -.0126
-•0201 -•0121
-•0185 -.0098
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O.
1
2
3
4
5
6
7

8
.9
.95
.98

O.
1
2
3

4
5
6
7
8
9
95
98

Table 4.8b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=4 , u=.3

Seml-elllptlcal crack9 Tension•

Lo/h .2 .4 .6 .8 .9 .95

.930 .741 .450

.927 .738 •449
• 918 .729 .445
.901 .715 .439
.878 .693 .429
.847 .665 .415
.807 .630 .396
.755 .584 .371

.685 .526 .338

.579 .445 .292

.491 .382 .258

.397 .319 .224

•149
•149
•150
• 150

150
149

146
141
133
119
109

•099

.0475 .0165

.0477 .0164
•0481 .0164
.0487 .0165
.0494 .0168
.0500 .0171

.0502 .0173

.0495 .0172
.0474 .0166
.0434 .0154
.0402 .0143
.0375 .0135

Seml-elllptlcal crack_ Bending•

Lo/h .2 .4 .6 .8 .9 .95

926 .710 .374
924 .709 .375
918 .707 .379
908 .702 .384
894 .696 .390
874 .687 .397
847 .673 .403

.810 .654 .407

.758 .626 .406

.669 .575 .395

.585 .523 .377

.486 .459 .350

.0663 -.0027 -.00918

.0683 -•0013 -.00824
.0742 .0027 -.00577
•0834 .0088 -.00241"
•0952 .0163 .00137

• 109 .0247 .00531
123 .0333 .00924
137 .0417 .0130
149 .0494 .0164
158 .0557 .0193
159 .0580 .0205
157 .0588 .0211
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y/a
O.

.1

•2
•3
•4
.5
6
7
8
9
95
98

y/a
O•
.1
.2
.3
•4

•5
.6
•7
•8
•9
.95
•98

Table 4.9a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=6 , _=-.3

Rectangular crack, Tension.

Lo/h .2 .4 •6 .8 •9 •95

971 •866 •613 •224 •0710 .0246
971 •865 .612 .223 •0708 •0246

970 .862 .607 .221 .0702 .0244
969 .856 .599 .217 .0690 .0240
966 •848 .586 .212 •0674 •0235
962 .835 .569 .204 .0651 .0228
957 .816 .546 .194 .0619 .0218
948 .789 .514 .180 .0575 .0203
931 .744 .466 .160 .0511 .0181
893 .657 .385 .126 .0398 .0140

.834 .558 .309 .096 .0297 .0103

.709 .425 .224 .066 .0196 .0067

Rectangular crack, Bending.

L,,/h
U"

.2 .4 .6 .8 .9 .95

•969 .845
•968 .844
•968 .840
•966 .834
•963 .823
• 959 .809

953 .787
943 .755
925 .704

884 .603
819 .489
683 .336

548
546
540

531
516
497
469
432
377
284
196

• 102

137
137
134
130

124
116
104

•090
.069
.035
.007

- .015

.0143

.0141
0135
0124
0108

0087
0058
0020

- 0035
- 0121
- 0179
- 0196

-.00622
-.00626
-.00641
-.00665
-.00700
-.00748
-.00812

-•00899
-•0102
-•0120
-.0126
-.0112
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Table 4•9b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=6 , v=-.3

Seml-elllptlcal crack, Tension.

I,o/h .2 .4 .6 .8

y/a
O. .950 .800 .526
.1 .947 •796 .524
.2 .936 •785 .518
.3 .919 .766 .508
.4 .893 .740 .493
.5 .860 .705 .472
.6 .817 .661 .444
.7 .761 .606 .408
.8 .687 .537 .362

•9 .577 .443 .300
•95 .486 •373 •256
•98 .390 .304 .215

• 186
• 186
• 186
• 186
.186
.183

178
169
155
133
117
102

.9 .95

.0588 .0199
.0590 .0199
.0597 .0200
.0607 .0203
.0619 .0209
.0627 .0214
.0627 .0217
.0613 .0215
.0576 .0205
.0507 .0183

.0452 .0164

.0402 .0148

Seml-elllptlcal crack, Bending.

y/a
O.

1
2
3

4
5
6

.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8

.947 .777 .463

.945 .775 .463
.938 .771 .465
.927 .763 .467

.911 .751 .467

.888 .735 .469

.858 .713 .468
•818 .683 .459
.761 .642 .443
• 667 .576 .412
.580 .515 .381
•478 .442 .341

.9 .95

.107 .0078 -.00713
109 .0095 -.00597
115 .0144 -.00292
125 .0217 .00188
138 .0305 .00574
151 .0400 .0104
164 .0491 .0148
175 .0573 .0187

.181 .0636 .0218

.180 .0667 .0237

.173 .0661 .0239

.163 .0636 .0233
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Table 4•lOa,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=lO , v=-.3

Rectangular crack, Tension.

y/a
O.
.i
.2
.3

.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

•983
•983
•982
• 981

98O
977
973
967

955
926
883
788

•917
•916
.914
•910
•903
• 893

880
855
815
735
642
506

723
721

717
708
695
677
652

• 617
• 564
•472
•385
.281

• 305 .0966 •0315
• 304 •0963 •0314

300 .0953 •0312
295 .0937 .0307

287 .0912 .0300
276 .0879 .0291
262 .0834 .0278
242 .0774 .0260
215 .0688 .0233
171 .0541 .0183
131 .0403 .0134

.088 .0257 .0083

Rectangular crack, Bending.

y/a
O.
.1
.2
.3
.4
.5
•6-

.7

.8
•9
.95
.98

Lo/h .2 .4 .6 .8 ,9 .95

•981
•981
•980

.979
•978

- •975
971
964
951
919
873
769

•904
•903
•901
•895
•888
•876

• 859
• 832
•786
•694
•586
•429

676 •226
674 .225
658 •222
659 •216
644 •207
623 •195
593 .179

.552 •158

.490 .129
.384 .082
.283 .041
.166 .002

.0406

.0403

.0393

.0376

.0351

0317
0273
0214
0133
0003

- 0106
-0186

.00012

.00000
-•00020
-.00061
-.00120
-.00201
-.00306

-.00447
-.00641
-.00954
-.0120
-.0126
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Table 4.10b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=lO , v=-.3

Seml-e11iptlcal crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

.968 .862 .624 .245 .0780 .0255
.965 .857 .621 .245 .0784 .0256
.953 .843 .611 .244 .0796 .0261
.935 .819 .595 .244 .0813 .0269
.907 .786 .571 .241 .0830 .0279
.871 .743 .538 .235 .0839 .0288

825 .689 .497 .224 .0830 .0292
766 .623 .445 .207 .0793 .0285
688 .542 .381 .181 .0716 .0262
574 .436 .300 .145 .0587 .0218
481 .360 .246 .120 .0493 .0185
383 .287 .197 .098 .0410 .0155

Semi-e11iptica1 cracks Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.966 .846

.964 .844
957 .837
944 .824
926 .806
901 .781

868 - :749
824_ .708
763 .653

.664 .572

.575 .502

.471 .422

.576 .173 .0274 .00266

.576 .176 .0296 -.00116

.574 .182 .0357 .00275
570 .192 .0445 .00797
564 .204 .0549 .0136
553 .215 .0653 .0191
537 .223 .0745 .0240
512 .225 .0810 .0277
475 .219 .0832 .0296
419 .200 .0792 .0290
373 .182 .0733 .0272
.322 .161 .0661 .0248
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Table 4.11 Normalized stress intensity factor at

the center of a semi-elliptical crack subjected to

tension and bending, _=.3

a/h .5

Lo/h

.I

.2

.3

.4

.5

.6

.7

.8

.85

.9

.95

.5

Tension
1. 1.5 2. 3. 4. 5. 6. 8. I0.

910

729
545
390
268
174
102
O5O

031
012
005

.945 .959 .967

.817 .858 .883

.662 .724 .765

.507 .577 .627

.365 .430 .479

.244 .295 .336

.146 .179 .207

.073 .089 .104

.045 .055 .064

.024 .029 .034

.008 .010 .012

.976 .981

.913 .930

.817 .850
695 .741
552 .605
400 .450
253 .291
128 .149
079 .092

041 .048
014 .016

984
942
873
774
646
491
324
168

104
053

.018

987 .990 .992

950 .961 .968
889 .912 .927
800 .837 .862
679 .728 .763
526 .581 .624
353 .402 .443
186. :2!7 _245

.115 .135 .153

.059 .069 .078

.020 .023 .025

Lo/h

.1
2

4

I. 1.5
Bending

2. 3. 4. 5. 6. 8. 10.

5
6
7
8

907 .943
709 .804
495 .626

306 .441
157 .271
053 .133

-.O07 .038
-.028 -.011

.957 .966

.848 .875

.696 .741
.521 .578

.346 .404
.191 .239
.074 .105
.004 .018

85 -.027 -.020 -.012 -.005
9 -.020 -.019 -.016 -.014 -

.975 .081 .984 .986 .990 .992

.907 .926 .938 .947 .959 .966
799 .836 .861 .879 .904 .921
657 .710 .748 .777 .818 .846
490 :552 .599 .637 .693 .734
315 .374 .422 .463 .527 .576
157 .201 .240 .273 .331 .378
043 .066 .087 .107 .142 .173
009 .022 .035 .046 .068 .088
008 -.003 .003 .078 .018 .027

95 -.005 -.011 -.011 -.011 -.010 -.009 -.008 -.007 -.005 -.003
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Table 4.12 The effect of Poisson's ratio on the

normalized stress intensity factor at the center

of a semi-elliptical crack subjected to tension

and bending, a/h=l.

Lo/h

.1

.2

.3

.4

.5
6
7
8
85
9
95

Tension Bending
O. .3 .5 O. .3 .5

.935 .945 .956

.791 .817 .848

•628 .662 .707
.473 .507 .554
•339 .365 .406
.228 .244 .273

• 138 .146 .163
•070 .073 .080
•044 .045 .049
• 023 .024 .025
• 008 .008 .009

•933 .943 .954
776 .804 .837
587 .626 .676

401 .441 .496
239 .271 .319
113 .133 .167
029 .038 f .056

- 013 -.011 -.005
-.019 -.020 -.017
-.017 -.019 -.019
-.010 -.011-.011
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a/h
.5
1 _"

I_5
2,
3.
4.
5.
6.
8.

10,

Table 4.13a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack

subjected to tension. In 13a the normalization
factor is for the corresponding depth edge crack

given by Lo/h. The data in 13b is normalized with

respect to a crack depth of .2 for all Lo/h, v=.3

Lo/h .2 .4 .6 .8 .g .g5

.729 .390 .174 .0499 .0158

.817 .507 .244 .0725 .0235

.858 .577 .295 .0895 .0291

.883 .627 .336 .104 .0336
913 .695 .400 .128 ,0411
930 .741 .450 .14g .0475
942 .774 .491 .168 .0534
950 .800 .526 .186 .0588
961 .837 .581 .217 .0688
968 .862 .624 .245 .0780

.00547
00833
0104

0120
0144
0165
0182

.olgg

.0228

.0255

a/h
.5
1.
1.5
2.
3.
4.
5.
6.
8.

10.

Table 4.13b

Lo/h .4 .6 .8 .9 .95

.729 .852 .890 ,873 .849 .864

.817 1,107 1,248 1.268 1,263 1.317

.858 1.261 1.506 1,564 1.563 1.638
•883 1.368 1.714 1.814 1.806 1.889

913 1.518 2.044 2.240 2.209 2.283
930 1.618 2.301 2.608 2.554 2.603

942 1.691 2.511 2.941 2.867 2.884
950 1.747 2.687 3.245 3.158 3.139
961 1.827 2.969 3.792 3.695 3.603
968 1.882 3.186 4.276 4.190 4.025
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a/h
.5
1.
1.5
2.
3.
4.
S.
6.
8.

10.

Tab]e 4.14a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to bending. In 14a the normalization
factor is for the corresponding depth edge crack

given by Lo/h. The data in 14b is normalized with

respect to a crack depth of .2 for all Lo/h , v=.3

Lo/h .2 .4 .6 .8 .9 .95

.709 .306

.804 .441

.848 .521

.875 .578

.907 .857

.926 .710

.938 .748

.947 .777

.959 .818

.966 .846

.0532 -.0281 -.0198 - 00960
133 -.0114 - 0186 -
191 -.0400 -
239 -.0180 -

315 .0434 -
374 .0663 -
422 .0873
463 .107
527 .142
576 .173

0162 -
0135 -
00813 -
00273 -
00258 -
00779 -
0178 -
0274 -

0106
0108
0107
0100
00918
00819
00713
00492
00266

a/h
.5
I.
1.5
2.
3.
4.
5.
6.
8.

I0.

Table 4.14b

Lo/h .2 .4

.709 .516

.804 .774

.848 .881

.875 .836

.9O7 1.110

.926 1.199 1

.938 1.263 1

.947 1.312 1

.959 1.382 1

.966 1.430 1

.6 .8 .9 .95

167 - 249 - 496 -.680
417 -
601 -

751 -
989
175
326
453
655 1
810 1

I01 -
0355 -

190 -
385 -
588 -
774
947
259
536

466 - 754
405 - 764

339 - 755
204 - 712
0685 - 650
0647 - 580
195 - 505
447 - 348
687 - 188
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Table 4.15 Contact curve for through crack
bending without addition of tensile field to
prevent interference as approximated by the line-
spring model, v=.3

a/h .5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0

.0

.1

.2

.3

.4

.51

.6

.7

.8

.9

•690 .774 .818 •846 .881 .902 .916
•689 774 •818 .846 .880 •901 .916
•687

•683
• 678
• 669
• 659
•645
•622
•584

772 .816 •844 •879 .900 .915
768 .813 .841 .877 .898 .913

763 .808 .837 .873 .895 .911
754 .800 .830 .868 .891 .906

744 .791 .822 .861 .885 .901
729 .776 .808 .849 .875 .892
706 .753 .786 .829 .857 .877

927 .941 .950
926 .941 .950
925 .940 .950
924 .939 .949
922 .937 .947
918 .934 .944
913 .930 .941
905 .924 .936
892 .912 .926

665 •712 •745 .790 •821 .844 .861 .886 .903
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- 98
- 95
- 90
- 80
- 70
- 60
-.51
-.40
-. 30
-.20
-.10

.0

.10

.20

.30

.40

.51
.60
.70
.80
.90
.95
.98

Table 4.16 Normalized stress intensity factors
are listed at positions along the crack front of

two collinear, symmetric part-through cracks
subjected to tension such that ib defines the inner

crack tip and _c refers to the outer tip. Two
different crack shapes are used for four different
values of the separation distance, b. results are
given for the crack from b to c.

v=. 3, (c-b) / (2h) =a/h, s=2/(c-b) [y- (c+b)/2]

(l_s 2) 1/2 _=_O(1-s2) 1/4

b=.l b=.5 b=l. b*® b=.l b=.5 b=l. b*®

.279 230

•266 224
•262 226
•262 233
•264 240
265 244
265 248
266 250

265 252
265 253
264 253
263 253
262 252
261 .251
259 .250
256 .247

.252 .244
248 .239

241 .233
233 .225
224 .216
221 .212
226 .217

.218 •205 •186 .153
•213 •203 •212 .178

.216 .207 •234 .200

.225 .217 .255 .225

.232 .225 .266 .240

.238 .231 .273 .250

.242 .236 .278 .256

.245 .239 .281 .262

.247 .242 .283 .266

.248 .243 .284 .268

.249 .244 .284 .269

.249 .244 .283 .269

.249 .244 .281 .268

.248 .243 .278 .266

.246 .242 .274 .263

.244 .239 .269 .259
.240 .236 .262 .252
.236 .231 .254 .244
.230 .225 .242 .233
.221 .217 .226 .217
.212 .207 .199 .192

.209 .203 .176 .170

.213 .205 .151 .145

• 145
• 170
• 192
.217
• 232

•242
•249
•256
•260
•262
264
264
263

262
259
254
248
240
230
214
189
167
142

.138
• 163
• 185
•210

•225
•236
•243
•249
•253
•256
•258

•258
•258
•256
253
249
243
236
225
210
185
163
138
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Table 4.17 The normalized stress intensity

factor at the maximum penetration point of two

interacting semi-elliptical surface cracks for

both tension and bending loads, v=-.3

a bl-al- 2h
b2-a 2 I 0 bl+a 1 Bb2÷a2"1=_.=_j-1, c- 2h ' d = a2-bl, h - .5, A- 2 '

PLATB TENSION

d/a 0.I 0.25 0.5 I 2 ®
c/a

1

Kt(A) 0.5
0.25

Kto O. 1

.397 .392 .386 .379 .374 .366
.382 .378 .375 .371 .368 .366
.373 .371 .369 .368 .366 .366
.367 .367 .366 .366 .366 .366

1

Kt(B) 0.5
0.25

Kto O. 1

.397 .392 .386 .379 .374 .366

.300 .293 .286 .279 .274 .269

.217 .209 .203 .198 .194 .190

.136 .130 .126 .124 .124 .123

PLATE BBNDING

1

Kb(A) 0.5
0.25

Kbo 0.1

.313 .306 .299 .290 .283 .272

.292 .287 .282 .278 .274 .272

.280 .275 .275 .273 .272 .272

.273 .273 .272 .272 .272 .272

1

Kb(B) 0.5
0.25

Kbo 0.1

.313 .301 .299 .290 .283 .272

.197 .188 .179 .171 .164 .272

.101 .091 .083 .076 .072 .069

.012 .0045 -.0004 -.0038 -.0057 -.0058
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Table 4.18a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (h),

surface crack in a plate under out-of-plane shear,

in-plane shear, or twisting loads, a/h=.5 , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9
.95

O. .998 •960 •810 •568 .429 .344
• 1 •997 •959 .807 .566 .427 .342
.2 .997 .956 .799 .557 .420 .336
•3 .997 .950 .786 .544 .408 .327
.4 .996 .942 .766 .524 .392 .313
•5 .995 .928 .738 .497 .370 .295
• 6 .994 .909 .699 .461 .341 .271
•7 .991 .877 .645 .415 .304 .241
•8 .985 .823 .566 .352 .256 .201
•9 .968 .706 .438 .260 .186 .146

.95 .932 .575 .328 .189 .134 .104
•98 .858 .409 .217 .122 .086 .066

y/:,
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Mode 3, K3/K20 (×100)

Lo/h .2 .4 .6 .8 .9
.95

•000
•026
•051
•076
•099

120
138

149
151
132
104
067

.000 .000 .000 .000 .000

.057 -.027 -.204 -.234 -.209
•112 -.056 -.404 -.463 -.413
.]63 -.089 -.598 -.680 -.605
.207 -.127 -.780 -.879 -.779
.241 -.173 -.946 -1.05 -.926
.261 -.229 -1.09 -1.18 -1.04
.261 -.296 -1.19 -1.26 -1.09
.230 -.378 -1.23 -1.26 -1.08
.146 -.465 -1.13 -1.09 -.914
.063 -.483 -.941 -.869 -.714

-.022 -.426 -.673 -.597 -.484
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y/a
O.

1
2

3
4
5
6
7

.8

.9

.95

.98

y/a
O.
.1
.2
.3
.4
.5

6
7
8

9
95
98

Table 4.18a continued, Normalized stress intensity

factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=.5 , u=.3

Rectangular crack, In-plane shear

Mode 3, K3/K3IO

Lo/h .2 .4 .6 .8 .9 .95

•780 .584
•779 .582
•776 .578
•769 .571

•760 .560
•746 .545
.725 .524
•692 .495
• 638 .451
•534 .379
•430 .316
.321 .251

513
512
5O8
502
492

478
460
434
396
333

.272

.199

.42O .316 .240

.418 .314 .239

.414 .311 .236

.408 .305 .231
397 .296 .224
383 .283 .213
364 .266 .199

337 .243 .181
299 .211 .155
235 .161 .116
179 •119 .085

.121 .078 .055

Mode 2, K2/K3IO(×lO0)

Lo/h .2 .4 .6 .8 .9 .95

•000
-.091
-.181
-. 269
-. 354
- 435
- 510
- 576
- 629
- 657

- 644
- 596

.000

-. 279
-.553
-.816

-1.06
-1 28
-1 46
-1 58
-1 62
-1 47
-1 22

-. 879

.000 .000 .000
-.274 -•135 -.067
-.540 -.265 -.132

-.788 -.384 -.191
-1.01 -.487 -.241
-1.19 -.568 -.280
-1.32 -.619 -.304
-1.38 -.633 -.308
-1.33 -.594 -.287
-1.10 -.475 -.227

-.847 -.355 -.169
-.567 -.233 -.110

•000

- 038
- 075
- 108
- 136
- 158
- 171
- 173
-. 160
-. 126
-.093
-.061
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Table 4.18a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate
under twisting loads, a/h=.5 , u=-.3

Rectangular crack, Twisting

Mdde 3, K3/K3TO

Lo/h .2 .4 .6 .8 .9

y/a
O. .754 .443 .124 -.723 -2.61
.1 .753 .441 .122 -.725 -2.61
.2 .749 .436 .115 -.730 -2.61
.3 .743 .426 .105 -.740 -2.61
.4 .732 .412 .089 -.752 -2.60
.5 .716 .392 .068 -.767 -2.58
.6 .693 .364 .040 -.782 -2.53
• 7 .656 .326 .002 -.791 -2.45

•8 .596 .268 -.046 -.782 -2.28
•9 .480 .176 -.109 -.709 -1.90
.95 .366 .I00 -.138 -.592 -1.50
.98 .235 .027 -.136 -.426 -1.03

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9

.00000
- 00101
- 00202
- 00301
- 00396
- 00487
- 00571
- 00644
- 00703
- 00734
-.00720
-.00666

.00000 .0000 .0000 .0000
-.00381 -.0058 -.0096 -.0217
-.00755 -.0114 -.0189 -.0425
-.0111 -.0167 -.0275 -.0618
-.0145 -.0214 -.0350 -.0785
-.0175 -.0253 -.0410 -.0916
-.0199 -.0281 -.0450 -.1001
-.0217 -.0294 -.0463 -.1024
-.0222 -.0284 -.0438 -.0962
-.0202 -.0236 -.0352 -.0767
-.0168 -.0182 -.0265 -.0523
-.0121 -.0122 -.0174 -.0374

.95

-7.45
-7.44
-7.41
-7.37
-7.29
-7.16

-6.95
-6.62
-6.03
-4.89
-3.76
-2.54

.95

.000
-. 057
-.111
-. 162
-. 205
-. 239
-.261
-. 266
-. 249
-.198
-. 147

-.096
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y/a
O.

1
2
3
4
5
6

7
8

.g

.95

.g8

f

y/a
O.
.I
.2
.3
.4

5
6
7
8
g
95
98

Table 4.18b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or

twisting loads, a/h=.5 , v=.3

Semi-elllptical crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9 .95

• 988 •883 •685
•982 .880 .684
•963 •871 •683
•931 •855 .680
.884 .830 .675
.821 .795 .668
.740 .745 .657
.636 .672 .637

.501 .564 .596

.319 .387 .487

.198 .249 .354
.103 .132 .200

467
466
465
464

464
465

•469
•476
•485
•478
.423
• 295

•350
348
343
337
332
330
332

•340
•355
•374
• 362
•288

Mode 3, K3/K20(XlO0)

Lo/h .2

277
273
262
251
242
237
236

241
•254
•275
• 277
• 234

000
024

048
O7O
090
108
123
134
141

• 142
• 139
• 132

.4 .6 .8 .9 .95

•000
-. 027
-. 049
-. 044
- •015

O48
151
295
482
722

898
1 O7

.000
-. 143

-. 274
-.379
-•443
-•449
-.376
-. 203

•086
•496
•767

1.01

.000
-. 155
-. 300
-. 426
- 520
- 568

- 546
- 423
- 160

262
54O
765

•000
171
336
489
623
736
825

891
• 943

1.01
1.12
i. 30

.000
- 133
- 256
- 363
- 447
- 499
- 500
- 420
-. 220

.134
.371
•555
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Table 4.18b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=.5 , v=.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

O.
.1
.2
.3

.4

.5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

•738 •547
.737 .546
• 734 •542
• 730 •537

•723 •529
.714 .518
.702 .506
.685 .492
.661 .477
.622 .465
.583 .467
.540 .480

•467
•465
.462
.455
•446
.433
415

393
367
34O
336
348

•350
•350
•350
349
348
344
335
319
290

248
228
226

•249

.249

.250

.250
•252
254
253
247
228
190
166
157

Mode 2, K2/K3IO(XlO0)

y/a
O.
.I
.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h .2

.000
-. 087
- 168
- 239

- 295
- 331
- 341
- 323
- 270
- 177
- 110
- 057

.95

• 184
• 183
• 181
.179
• 180
.182

• 184
•182
.171
• 142
.121
.111

.4 .6 .8 .9 .95

•000
-. 229
-. 450
-.656
- 838
- 984

-i 08
-I I0
-I Ol

- 732
- 477
- 254

.000 .000 .000 .000

-.207 -.107 -.058 -.037
-.412 -•213 -•116 -•071
-.614 -.320 -.172 -.103
-.809 -.428 -.229 -.135
-.994 -.539 -.288 -.169

-1.16 -.654 -.352 -.206
-1.30 -.777 -.427 -.252
-1.36 -.904 -.515 -.309
-1.22 -1.00 -.618 -.385

-.924 -.937 -.638 -.415
-.534 -.677 -.528 -.367
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Table 4.18b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under twisting loads, a/h=.5 , v=-.3

Semi-elliptical crack, Twisting

y/a
O.

1
2
3
4
5
6
7
8
9
95

98

Mode 3, K3/K3TO

Lo/h .2 .4 .6 .8 .9

•712
•713
.714
•717
•720
•724
•729

•733
•734

.724
•702
• 667

•411 103
•413 108
•419 124
.431 149

•447 186
•468 235
•496 297
.531 375
•577 472
•645 604
.703 713
•765 831

.95

Mode 2, K2/K3TO

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2

.00000
-.00097
-.00189
-.00269

-.00333

-.00373
-.00386

-.00366

-.00307
-.00202
-.00126
-.00065

-.636 -2.17 -6•01
-.625 -2•15 -5.92
-.592 -2.08 -5.70

-.533 -1.97 -5.39
-.445 -1.79 -4.99
-.320 -1.53 -4.44
-.149 -1.16 -3.63

.078 -.628 -2.40

.370 .124 -.578

.741 1.13 1.98

.994 1.76 3.59
1.23 2.30 4.87

.4 .6 .8 .9 .95

.0000 .0000 .0000 .000
-.0046 -.0080 -.0179 -.045
-.0093 -.0160 -.0351 -.087
-•0138 -.0238 -.0516 -.124
-•0182 -.0316 -.0674 -.159
-.0224 -.0394 -.0831 -.193
-.0262 -.0473 -.0994 -.229
-.0293 -.0554 -.117 -.269
-.0308 -.0638 -.138 -.319
-.0277 -.0698 -.161 -.383
-.0209 -.0650 -.164 -.405
-.0121 -.0468 -.135 -.354

00000
00320

- 00631

- 00922
- 0118
- 0]39
- 0153
- 0156
- 0144
- 0105
- 00686
- 00365
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Table 4.19a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=l. , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

O.
I
2
3
4
5
6
7
8

.9

.95

.98

Lo/h .2

I•00
I•00
1.00

• 999
• 999
•999
•998
•997
•994
•985

•968
.919

.4 .6 .8 .9 .95

.994 .957

.994 .955

.993 .949

.990 .939

.986 .923

.979 .899
969 .864
95O .812
915 .731
826 .587
709 .452

534 .306

.839 .730
.836 •727
•825 •715
807 •696
780 .668
744 .630
694 .581

628 .517
537 .434
401 .315

.293 .226

.190 .145

Mode 3, K3/K20 (XlO)

O.
.I
.2
.3
.4
5
6
7
8
9
95
98

Lo/h .2

.0000

.0031
0063
0095
0127
0160
0192
0221
0240
0229
0192
0134

644

640
629
610
583
547
501
443
367

.263
•187

•119

.4 .6 .8 .9 .95

0000 .0000 .0000 .000 .000
0212 .0060 -.0298 -.052 -.056

0427 .0115 -.0599 -.103 -.112
0646 .0157 -.0905 -.]53 -.165
0870 .0180 -.122 -.201 -.215
110 .0177 -.153 -.245 -.260
132 .0136 -.184 -.284 -.297

• 153 .0044 -.212 -.313 -.322
• 169 -.0119 -.234 -.325 -.326
• 174 -.0385 -.236 -.299 -.290
• 167 -.0562 -.211 -.249 -.235
• 151 -.0626 -.161 -.178 -.164
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y/a
O.

.I

.2
3
4
5
6
7
8
9
95

98

Table 4.19a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=l. , v=.3

Rectangular crack, In-plane shear

Mode 3, KS/K3IO

Lo/h .2 .4 .6 .8 .9 .95

826 .669 .625
826 .668 .624

824 .665 .620
821 •659 •613
816 .651 .603
809 .639 .589
796 .621 .570
775 .593 .541
736 .549 .498
646 .468 •424
540 .392 .354
405 .308 .268

•570
•568

564
555
543
526
5O2
469

•421
•340
•265
• 183

.472
•470
.466
457
445

428
404
372
327
254

.191
• 128

I[ode 2, K2/K3IO (x10)

Lo/h .2

•384

•. 382
• 378

370
359

344
323
295
255
194

.144
•095

.4 .6 .8 .9 .95

y/a
O. .0000 .000 .000 .000 .000 .0000
.1 -.0105 -•043 -.063 -•049 -.031 -.0200
.2 -•0211 -.086 -.125 -.096 -.050 -.0392
.3 -.0320 -.128 -.185 -.140 -.088 -.0567
.4 -.0432 -.170 -.240 -.178 -.111 -.0715
.5 -.0548 -.211 -.289 -.209 -.129 -.0827
.6 -.0665 -.248 -.327 -.229 -.140 -.0893
.7 -.0780 -.279 -.349 -.236 -.142 -.0898
.8 -.0882 -.298 -.346 -.222 -.131 -.0825
.9 -.0950 -.286 -.296 -•178 -.103 -.0639
.95 -.0951 -.249 -.232 -.133 -.076 -.0468
.98 -.0905 -.188 -.158 -.873 -.049 -.0302
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Table 4.19a cont• Normalized stress intensity

factors for a rectangular surface crack in a plate

under twisting loads, a/h=l. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Lo/h .2 .4 .6 .8 .9

y/a
O. .806 .555
.1 .805 .554
.2 .804 .550
.3 .800 .543
.4 .795 .532
.5 .786 .515
.6 .773 .491
.7 .749 .455
.8 .705 .397

.9 .605 .291

.95 .487 .193

.98 .336 .091

310
308
302
291
274

251
.218
.172
• 104
.004

-. 073
-.116

.95

-.354 -2.01 -6.48

-.358 -2.02 -6.49
-.369 -2.03 -6.51
-.389 -2.06 -6.55
-.417 -2.10 -6.59
-.455 -2.15 -6.63
-.504 -2.20 -6.66
-.564 -2.24 -6.62
-.630 -2.24 -6.40
-.673 -2.07 -5.63

-.628 -1.75 -4.60
-.497 -1.27 -3.25

Mode 2, K2/K3TO

Lo/h .2 .4 .6 .8 .9 .95

y/a
O. .00000 .0000 .0000 .0000 .000

•I -.00117 -.0058 -.0126 -.0267 -.063
•2 -.00236 -.0116 -.0250 -.0527 -.125
•3 .. -.00357 -.0174 -.0369 -.0770 -.182
•4 -.00483 -.0231 -.0480 -.0989 -.233
•5 -.00612 -.0286 -.0579 -.117 -.274
•6 -.00743 -.0337 -.0658 -.130 -.301
•7 -.00871 -.0380 -.0705 -.135 -.310
•8 -.00985 -.0405 -.0702 -.129 -.293
•9 -.0106 -.0390 -.0603 -.105 -.234
•95 -.0106 -.0339 -.0475 -.0791 -.175
•98 -.0101 -.0256 -.0325 -.0522 -.114

•000
-.171
-. 337
-.491
-. 625
-.733
-. 804
-. 824
-. 774
-.613
-. 454
-. 295
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Table 4.195 Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under out-of-plane shear, in-plane shear, or

twisting loads, a/h=l. , _=-.3

Semi-elliptlcal crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2

y/a
O. .996

.I ,989

.2 .969
,3 .939
.4 .888
o5 ,823
.6 .740
.7 .634
.8 .499
.9 .318
.95 .197
.98 .102

.4 .6 .8 .9 .95

.953 .851 .693 .576 .487

.949 .848 .690 .571 .477

,935 .840 .682 .557 .453
.910 ,826 .670 .538 .425
.875 .805 .655 .518 .399
.826 .776 .637 .498 .377
760 .736 .616 .479 .360
671 .680 .590 .462 .346
548 .593 .551 .442 .333
366 .437 .466 .398 .308
232 .295 .356 .328 .263
123 .161 .213 .212 .178

Mode 8, K3/K20(xlO)

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2

0000
0048
0094
0135
0170
0197
0215
0221
0216
0196
0176

0153

.4 .6 .8 .9 .95

.0000

.0125

.0250

.0375
0498
0616
0726
0823
0907
0964
0989
101

•0000 .0000 .0000 .000
•0031 -.0283 -.0405 -.0,10
•0080 -.0523 -.0766 -.075
•0165 -.0680 -.104 -.102
.0299 -.0712 -.119 -.118
•0489 -.0583 -.116 -.120
•0733 -.0266 -.0914 -.102
• 102 .0245 -.0410 -.062
• 135 .0924 .0351 ,005
• 170 .173 .131 .092
• 193 .223 .187 .144
•217 .272 .239 ,188
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Table 4.195 cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=l. , v=.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

Lo/h .2 .4 .6 .8 .9

y/a
O• .800 .635 .577 .489
.I •799 •634 .575 .487
.2 .795 .629 .568 .483
.3 .789 .622 .557 .475
.4 .780 .612 .542 .463
.5 .767 .598 .521 .446
.6 .750 .582 •496 .421

.7 .726 .563 .466 .389

.8 .690 .541 .433 .346

.9 .627 .513 .399 .297
.95 .567 .496 .387 .277
.98 .493 .483 .393 .277

382
381
376
370
362
352

•336

•311
.275
•227
.204
.200

Mode 2, K2/K310 (x10)

Lo/h .2 .4 .6 .8

y/a
O. .0000 .000 .000 .000

• 1 -.0133 -.043 -.050 -.031
•2 -.0259 -.083 -.099 -.063
•3 -.0368 -.121 -.145 -.094
•4 -.0452 -.153 -.189 -.124
•5 -.0503 -.176 -.227 -.155
•6 -.0514 -.188 -.257 -.184
•7 -.0478 -.186 -.273 -.210
•8 -.0390 -.162 -.265 -.228
•9 -.0246 -.110 -.208 -.218
.95 -.0148 -.069 -.142 -.175
•98 -.0075 -.036 -.077 -.107

.9

.0000
-.0174
-.0347
-.0519
-.0695
-•0878
-.107
-.127
-.146
-.154
-.136
-.916

.95

299
295
288
279

271
263

•253
.236
•209
• 170
•149
•144

.95

.0000
-.0101
-.0199
-.0296
-.0396
-.0506
-.0630
-•0769
-.0915

-.1019
-.0948

-•0675
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Table 4.195 cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under twisting loads, a/h=l. , v=-.3

Seml-elliptlcal crack, Twlstlng

Mode 3, K3/K3TO

y/a
O.

.1

.2

.3

.4

.5

.6

.7

.8

.9
.95
.98

Lo/h .2 .4 .6 .8 .9

779 .523 .277 -.335 -1.71

780 .525 .282 -.322 -1.68
781 .532 .297 -.281 -1.59
782 .543 .323 -.212 -1.43
784 .559 .359 -.109 -1.19
786 .581 .408 .030 -. 863
786 .608 .470 .213 -.413
783 .642 .547 .445 .186

.771 .684 .644 .734 .957

.737 .739 .779 1.11 1.93

.690 .774 .884 1.37 2.58
.618 .800 1.00 1.65 3.23

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

Lo/h .2

.00000
-.00147
-.00285
-.00407
-.00502
-.00561
-.00577
-.00540
-.00443
-.00281
-.00170

-.00086

.95

-5.27
-5.16
-4.88

-4.45
-3.88
-3. i0
-2.03

-. 567
1.38
3.86
5.46
6.99

.4 .6 .8 .9 .95

.0000 .0000 .0000 .000 .000
-.0057 -.0103 -.0210 -.050 -.133
-.0112 -.0204 -.0417 -.098 -.253
-.0163 -.0302 -.0618 -.143 -.358
-.0207 -.0394 -.0810 -.184 -.449
-.0241 -.0476 -.0991 -.222 -.533
-.0260 -.0543 -.116 -.259 -.613
-.0259 -.0581 -.130 -.292 -.690
-.0229 -.0571 -.140 -.321 -.761
-.0158 -.0455 -.132 -.325 -.791
-.0100 -.0313 -.106 -.281 -.712
-.0052 -.0107 -.0644 -.187 -.497
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Table 4•20a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=2. , v=.3

Rectangular crack, Dut-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9
.95

y/a
O. 1.00 1.00 1.00 .984 .955 .921
.1 1.00 1.00 •999 •983 •952 •917
.2 1.00 1.00 .998 .976 .942 .905
.3 1.00 1.00 .995 .965 .925 .885
.4 1.00 .999 .989 .947 .899 .853
.5 1.00 .997 .979 .919 .860 .809
.6 1.00 .994 .961 .877 .806 .749
.7 .999 .987 .929 .813 .730 .668
.8 .998 .969 .867 .714 .621 .557
.9 .994 .915 .733 .548 .456 .399
.95 .977 .826 .587 .407 •329 .283
•98 .995 .670 .414 .268 .212 .180

Mode 3, K31K20(xlO)

Lo/h .2 .4 .6 .8 .9

O. .0000 .0000 . (XXX) .0000 .000
.I .0016 .0072 .0114 -.0066 -.034
.2 .0034 .0148 .0227 -.0151 -.071
.3 .0054 .0232 .0339 -.0274 -.112
•4 .0078 .0327 .0445 -. 0456 -. 159
.5 .0108 .0435 .0535 -.0718 -.214
.6 •0145 .0556 .0591 -.108 -•276
.7 .0191 .0678 .0579 -. 155 -. 341
.8 .0241 .0768 .0443 -.211 -.400
•9 .0275 .0725 •0070 -. 263 -.421
•95 .0257 .0556 -.0279 -. 267 -. 381
•98 •0197 •0291 -•0585 -. 229 -. 294

.95

•000
- .052
-. 106
-. 163
-. 224
-. 290
-. 359
- .424
- .472
-.467
-.405
-. 300
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Table 4.20a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=2. , z_-.3

Rectangular crack_ In-plane shear

y/a
O.
.I
.2
.3

.4

.5

.6

.7

.8

.9

.95

.98

Mode 3, K3/K3IO

Lo/h .2 .4 .6 .8 .9

• 841

• 841
.841
•840
•838
•835
•830
•820
•799
•738
•646
.512

709
709
707
705
7OO
693

•683
•664
•631

•556
•472
•381

.699 ,706

.698 .704

.695 .700

.691 .692
.684 .680
.673 .663
.657 .639
.633 .604
.592 .551
.515 .457
.437 .367
.345 .263

641
640

634
625
611
591
563
525
468

• 372
.287
• 196

y/a
O.
.1
.2
.3
.4
5
6
7
8
9
95
98

Lo/h

Mode 2, K2/K3IO(xlO)

.2 .4 .6 .8

0000 .000 .000 .000

0053 -.026 -. 054 -.070
0110 -.054 -.110 -.140
0176 -.085 -. 170 -. 210
0256 -. 122 -. 236 -. 278
0357 -. 165 -. 306 -. 343
0484 -. 216 -. 380 -. 399
0643 -. 273 -. 447 -.435
0829 -. 329 -. 490 -.435
101 -. 359 -. 463 -. 365
106 -. 337 -. 383 -. 279
109 -. 274 -. 272 -. 185

.9

.000

- 061
- 122
- 180
- 235
- 282
- 317
- 334
- 320
- 256
- 189
- 123

.95

•559
•558

.552
•542
•528
•508
.481
•444
•390
• 303
•228
• 153

.95

.000
-. 049

-.098
-. 143
-. 184
-.219
-. 242
-. 250
-. 234
-. 182
-. 133
-. 085
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Table 4.20a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under twisting loads, a/h=2, j v=-.3

Rectangular crack, Twisting

Mode 3, KZ/KZTO

Lo/h .2 .4 .6 .8 .9

O. .823 .608 .434 .012 -1.15
.1 .823 .607 .433 -.008 -1.16

.2 .822 .605 .428 -.004 -1.19

.3 .821 .602 .421 -.025 -1.23
.4 .819 .596 .409 -.057 -1.30
.5 .816 .587 .391 -.101 -1.39
.6 .810 .573 .364 -.163 -1.51

.7 .799 .549 .323 -.250 -1.67

.8 .776 .504 .256 -.370 -1.85

.9 .708 .406 .132 -.532 -1.99

.95 .607 .300 .023 -.597 -1.88

.98 .448 .165 -.077 -.551 -1.51

Mode 2, K2/K3TO

y/a
O.
.1
.2

.3

.4

.5
6
7
8
9

95
98

Lo/h .2 .4 .6 .8 .9

.00000 .0000 .0000 .000 .000

-.00059 -.0035 -.0103 -.031 -.086
-.00123 -.0073 -.0211 -.063 -.172
-.00197 -.0115 -.0326 -.095 -.258
-.00287 -.0164 -.0453 -.128 -.342
-.00399 -.0223 -.0592 -.160 -.421
-.00541 -.0292 -.0737 -.190 -.489
-.00718 -.0369 -.0874 -.212 -.534
-.00926 -.0446 -.0967 -.218 -.534
-.0113 -.0488 -.0923 -.189 -.448
-.0118 -.0458 -.0767 -.147 -.340
-.0121 -.0373 -.0546 -.098 -.224

.95

-4.53
-4.55
-4.61
-4.71
-4.85
-5.03
-5.26

-5.54
-5.81
-5.78
-5.18
-3.96

.95

.000
-. 251
-. 502
-.748
-.986

-1.20
-1.38
-1.49
-1.47
-1.21

-. 906
-.591
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Table 4.20b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=2. , _=-.3

Seml-elllptlcal crack, Out-ol-plane shear

Mode 2, K2/K20

y/a
O•
.1
•2
.3
•4
.5

.6

.7
•8
•9
.95
.98

Lo/h .2 •4 .6 .8 .9 .05

999 •986 .950 .876 .799 .723
992 .981 .946 .870 .789 .704
972 .964 .931 .852 .760 .658

938 .935 .906 .823 .718 .601
889 .893 .871 .786 .670 .544
824 .837 .823 .741 .619 .491
740 .762 •761 . .687 .567 .442

.634 .665 .680 •623 .512 .395

.498 .536 .568 .538 .446 .344

.317 .354 .395 .403 .347 .271

.196 .224 .259 .281 .252 .201
.102 .119 .140 .159 .147 .120

Mode 3, K3/K20(XlO)

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h •2 .4 .6 .8 .9 .95

.0000

.0060

.0116

.0166

.0206

.0232

.0243

.0237

.0213

.0170

.0140

.0113

.0000
•O189

•0373
.0550
.0712
.0851
.0959
•1023
.1031
.0970
.0901
•0828

.000

.015
•032
052
076

103
134
163
189
207
214
218

.0000
-.0257

-.0446
-.0504
-.0383
-.0515

0489
119
197
271
3O9
340

.000
-. 055
-. 101
-. 129
-.131
-. 105

.046

.039
• 142
•244
•296
.338

.000
- .065
-.118
-.151
-. 160
-. 139
-. 087
-.006

.094

.196

.247
•284
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Table 4.20b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=2. , v=.3

Seml-e11iptlcal crack, In-plane shear

Mode 3, K3/K3IO

y/a
O.

1

2

3

4

5

6

7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9

•829
•828
•824
.817
.807
.792
.772
.744

• 701
.624
•549
•467

.95

.687 .659 •623 •532 .442
•686 .656 •619 .528 .434
.681 .647 .608 .516 .417

672 .631 .590 .497 .395
660 .610 .564 .474 .371

644 .583 .531 .444 .346
625 .550 .489 •407 .317
602 .513 .440 .362 .281
573 .472 .384 .309 .237
530 .428 .325 .251 .188
493 .403 .298 .224 .166
453 .387 .287 .213 .157

Mode 2, K2/K3IO (x10)

y/a
O.

1
2
3
4
5
6

.7

.8

.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.0000 .000 .000 .000 .0000 .0000
-.0125 -.043 -.059 -.041 -.0181 -.0038
-.0243 -.084 -.116 -.083 -.0384 -.0106
-.0349 -.123 -.172 -.127 -.0626 -.0224

-.0436 -.157 -.226 -.174 -.0919 -.0403
-.0493 -.183 -.274 -.222 -.127 -.0646
-.0512 -.199 -.310 -.268 -.165 -.0943
-.0482 -.108 -.326 -.306 -.204 -.127
-.0393 -.172 -.308 -.320 -.233 -.156
-.0241 -.114 -.226 -.275 -.223 -.160
-.0141 -.069 -.146 -.197 -.173 -.131
-.0068 -.035 -.076 -.110 -.102 -.0806
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Table 4.205 cont• Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=2. , v=-.3

Seml-elllptlcal crack_ Twisting

y/a
O.
.1
.2
.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h .2

811

811

812

813

814

815

813

806

788

738

673

590

Mode 8, K3/K3TO

.4 .6 .8 .9 .95

587 .401 -.020 -1.03 -3.75
589 •406 -.006 -.999 -3.65
596 .421 .035 -.895 -3.34
607 .445 .106 -.719 -2.87
624 .481 .208 -.463 -2.23
646 .528 .345 -.115 -1.37
673 .588 .521 .343 -.228
706 .665 .743 .927 1.24
745 .763 1.02 1.66 3.11
784 .893 1.39 2.60 5.48

792 .980 1.65 3.25 7.07
776 1.05 1.89 3.84 8_48

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

00000
- 00133
- 00261
- 00376
- 00473
- 00540
- 00568
- 00541
- 00447
-.00277
-.00163
-.00079

.4 .6 .8 .9 .95

0000
- 0052
- 0103
- 0153
- 0198
- 0237
-.0264
-.0270
-.0242
-.0165
-.0102
-.0052

.0000
-.0104
-.0208
-•0312
-•0416
-•0514
-.0600
-.0655
-.0643
-.0494
-.0325
-.0172

.0000
-. 0245
-. 0490
-. 0732
- 0973
- 121
- 144
- 163
- 173
- 152
- 111
- 0624

• 000 .000
-.065 -. 187
-. 128 -. 354
-.186 -.496
-.240 -.618
-.291 -.729
-. 340 -. 833
-. 384 -. 928
- .412 -.994
-. 383 -.941
-. 296 -.749
-. 176 -.458
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Table 4.21a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under out-of-plane shear,

in-plane shear, or twisting loads, a/h=4. , _=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

y/a
O.
.1
.2
•3
•4
5
6
7
8
9
95

.98

Lo/h .2 .4 .6 .8 .9 .95

1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1 •00 1.00 1.00 1.00 1.00 •999

1. O0 1. O0 i.00 1.00 .998 .993
1.00 1.00 1.00 .999 .992 .982
1. O0 1. O0 1. O0 . 993 . 978 . 962
1. O0 1. O0 . 997 . 978 . 952 . 925
1. O0 .999 . 988 . 947 . 902 . 862
1. O0 .994 .961 .876 .806 .752

•998 .967 .866 .713 .620 .558
•982 . 914 . 732 . 547 . 455 . 399

1.03 .799 .543 .368 .295 .254

Mode 3, K3/K20(xlO0)

y/a
O.
.I
.2
.3
.4
.5

6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

•0000
•0044
•0094
.0157
•0245
•0378

0594
0960
158

250
283
249

.95

.000 .000 .000 .000 .000
•021 .047 .066 .027 -•038
.044 .098 .130 .036 -.104
.074 .161 .186 .004 -.234

.115 .241 .221 -.106 -.473

.175 .346 .207 -.348 -.879

.268 .479 •085 -.803 -1•53

.411 .627 -.240 -1.57 -2.47

.616 .720 -.910 -2.70 -3.70

.809 .526 -2.01 -3.97 -4.81

.760 .131 -2.57 -4.23 -4.77

.493 -.380 -2.60 -3.64 -3.88
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Table 4.21a cont• Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=4. , u=-.3

Rectangular crack, In-plane shear

Mode 3, K3/K3IO

Lo/h •2 •4 •6 .8 •9

y/a
O• .844 .722 •735 .797
.1 •844 .722 .734 .796
.2 .844 .722 .733 .793
.3 .844 .721 .731 .788

.4 .844 .720 .727 .779

.5 .843 .717 .722 .766

.6 .842 .713 .713 .747

.7 .838 .704 .697 .718
•8 .830 .686 .668 .669
.9 .799 .633 •600 .573
.95 .737 .556 •521 .474
.98 .621 .458 .424 .354

•782

.781

•776

.768

•755

•737

711

672

611

502

398

281

Mode 2, K2/K3IO (X10)

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

.0000
- 0014
- 0029
- 0049
- 0077
- 0120
- 0191
- 0313
- 0526
- 0860
- 103
- 114

.95

•728
•726
•720
.711
• 696
• 675
• 646
• 604
•541
• 432
•334
•229

.4 .6 .8 .9 .95

.0000
-.0068
-.0146
-.0247
-.0388
-.0604
- 0946
- 150
- 237
- 345
- 372
- 336

•000 .000 .000 .000
-.016 -.031 -.038 - .041
-. 034 -.064 -. 080 -. 083
-. 058 -. 105 -. 126 _-. 129
-.090 -.156 -.181 -.][81
-. 136 -. 222 -. 245 -. 236
-. 205 -. 306 -. 317 -. 293
-. 303 -. 404 -. 388 -. 343

-. 429 -. 493 -. 435 -. 364
-. 526 -. 499 -. 399 -. 316
-.491 -.411 -.310 -.238
-. 373 -. 282 -. 204 -. 153
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Table 4.21a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under twisting loads, a/h=4. , v=.3

Rectangular crack, Twisting

Mode 3, K3/KSTO

Lo/h .2 .4 •6 .8 •9

y/a
O. .826
.1 .826

.2 .826

.3 .826

.4 .825

.5 .825

.6 .823

.7 .820

.8 .810

.9 .776

.95 .708

.98 .570

•624 •492
624 .491
624 •490
623 .486
621 •480
618 .471
612 .456
601 .430

577 .381
507 .269
411 .145
261 -.006

259
257
248
233
210
175

• 123
• 044

-.085
-•311
-. 484
-. 570

-. 405
-.413
-. 438
-. 483
-.551
-. 648
-•785
-. 979

-1.26
-1.67
-1.85
-1.72

Mode 2, K2/K3TO

.95

-2.48
-2.51
-2.58
-2.70

-2.88
-3.13
-3.47
-3.92
-4.54
-5.28
-5.39
-4.65

Lo/h .2 .4 .6 .8 .9 .95

y/a
O. .00000 .00000 .0000 .000 .000 .000
.1 -.00015 -.00092 -.0030 -.012 -.037 -.122
.2 -.00033 -.00197 -.0064 -.024 -.079 -.255
.3 -.00055 -.00331 -•0107 -.040 -.128 -.412
.4 -.00086 -.00522 -•0167 -.061 -.191 -.606
.5 -.00134 -.00812 -•0255 -.090 -.271 -.845
• 6 -.00214 -.0127 -.0387 -.127 -.372 -1.13
•7 -.00350 -.0202 -.0578 -.175 -.488 -1.45
•8 -.00587 -.0319 -.0828 -.224 -.593 -1.70
.9 -.00961 -.0467 -.1031 -.240 -.599 -1.66
.95 -.0115 -.0505 -•0973 -.205 -.492 -1.34

.98 -•0127 -.0457 -•0745 -.144 -.335 -.895
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Table 4.21b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=4. , _=-.3

Seml-elllptlcal crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9
.95

y/a
O. 1.00 .997 .988 .965 .932 .889
.1 .993 .991 .982 .956 .916 .860
.2 .973 .973 .964 .930 .872 .788
.3 .939 .943 .935 .890 .809 .699
.4 .890 .899 .893 .838 .737 .612
.5 .824 .840 .838 .776 .662 .531
•6 .740 .763 .767 .703 .586 .458
•7 .633 .663 .675 .618 .507 .390

•8 .497 .532 .553 .513 .419 .319
•9 .316 .349 .376 .362 .301 .230
•95 .196 .221 .244 .244 .206 .159
•98 .102 .117 .132 .136 .117 .092

Mode 3, K3/K20 (x10)

Lo/h .2 .4 .6 .8 .9
.95

y/a
O. .0000 .0000 .000 .0000 .0000 .000
• 1 .0049 .0170 .020 -.0077 -.0408 -.063
.2 .0095 .0336 .040 -.0097 -.0700 -.107
• 3 .0135 .0492 .062 -.0144 -.0790 -.123
.4 .0167 .0632 .086 .0201 -.0638 -.109
• 5 .0188 .0750 .110 .0553 -.0246 -.068
•6 .0194 .0826 .134 .102 .0344 -.007
.7 .0183 .0850 .153 .154 .105 .065

•8 .0154 .0800 .162 ._01 .173 .134
.9 .0108 .0660 .156 .230 .223 .186
.95 .0097 .0585 .145 .228 .230 .196
.98 -.0030 .0244 .120 .254 .280 .244
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Table 4.21b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=4. , v=-.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

y/a
O•
.1
.2
.3
.4

.5
•6
.7
•8
•9
•95
.98

Lo/h .2 .4 .6 .8 .9

• 840
•839
•835
.828
.817
.802
.781

• 751
•705
•622
•540
•451

.95

.712 .709 .728 .672 .590
.710 .705 .722 .664 .577
.704 .693 .704 .640 .545
.695 .675 .675 .606 .503
.682 .649 .635 .562 .458
666 .616 .586 .511 .411
645 .579 .529 .453 .360

620 .537 .466 .390 .306
587 .491 .400 .323 .249
535 .439 .334 .257 .193
485 .403 .301 .226 .166
427 .370 .279 .208 .156

Lo/h .2

Mode 2, K2/K3IO(XlO)

.4 .6 .8 .9 .95

O. .0000 .000 .000 .000 .0000 .0000
.I -.0079 -.027 -.039 -.025 .0021 .0237
.2 -.0156 -.053 -.078 -.053 -.0031 .0349
.3 -.0227 -.079 -.117 -.087 -.0206 .0279

.4 -.0290 -.103 -.158 -.128 -.0524 .0283

.5 -.0338 -.125 -.197 -.176 -.0971 -.0369

.6 -.0365 -.142 -.233 -.227 -.151 -.0863

.7 -.0360 -.149 -.257 -.273 -.205 -.138

.8 -.0306 -.137 -.254 -.295 -.242 -.178
.9 -.0190 -.094 -.191 -.249 -.222 -.174

.95 -.0132 -.062 -.126 -.172 -.161 -.130

.98 .0064 .000 -.039 -.079 -.0810 -.0675
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Table 4.21b cont. Normalized stress intensity

factors for a semi'elliptical surface crack in a

plate under twisting loads, a/h=4. , v=-.3

Seml-elllptlcal crack, Twisting

Mode 3, K3/K3TO

y/a
O.
.1

.2

.3

.4

.5
.6
.7
.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

• 822 .615 .470 .211 -.425 -2.21
• 822 .617 .475 .224 -.391 -2.11
• 823 .624 .489 .263 -.290 -1.82
•824 .636 .513 .330 -.119 -1.37
•826 .653 .548 .427 .129 -.736
•826 .676 .594 .55_ .464 .107
.824 .704 .655 .724 .898 1.20
.816 .738 .733 .936 1.45 2.59
.795 .776 .832 1.21 2.15 4.34
•738 .806 .960 1.58 3.08 6.65
.664 .794 1.03 1.83 3.72 8.24
.572 .749 1.06 2.02 4.24 9.53

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3

.4

.5

.6

.7

.8

.9
.95
.98

Lo/h .2

00000
- 00082
- 00161
- 00237
- 00306

- 00363
- 00399
- 00401
- 00350
- 00222
- 00155

.00068

.4 .6 .8 .9 .95

.0000 .0000 .0000 .000 .000
-.0029 -.0052 -.0116 -.033 -.I06
-.0058 -.0107 -.0238 -.066 -.199
-.0088 -.0167 -.0372 -.098 -.281
-.0119 -.0235 -.0529 -.133 -.357
-.0150 -.0313 -.0719 -.173 -.442
-.0179 -.0399 -.0949 -.223 -.547
-.0198 -.0480 -.121 -.284 -.680
-.0194 -.0522 -.144 -.344 -.822

-.0141 -.0434 -.136 -.345 -.844
-.0095 -.0297 -.100 -.265 -.664
-.0004 -.0104 -.0480 -.138 -.360
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Table 4.22 Normalized stress intensity factor at

the center of a sem_-e]lipt_ca] crack subjected to

out-of-plane shear, in-plane shear, arid twisting

loads, y=.3

5
Lo/h

1
2

3
4

Out-of-plane shear, Mode 2, K2/K20
1. 1.5 2. 3. 4. 5. 6. 8. 10.

.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

• 998 .996
.952 982
.883 953

5 .790 909
6 .685 851

•7 .576 780
.8 .467 693
.85 .410 640
.9 .350 576
.95 .277 .487

998 .999 .999 1.00 1.00 1.00 1.00 1.00
991 .995 .998
976 .986 .994

952 .972 .987
918 .950 .978
873 .920 .963
811 .876 .938

999
997
993
988
979
965

769 .844 .919 .952
714 .799 .889 .932
629 .723 .832 .889 .921

999 .999 1.00 1.00
998 .999 .999 1.00
996
992
987
978
969
954

997 .998 .999
995 .997 .998
991 .995 .997
985 .992 .995
979 .988 .993
968 .982 .988
942 .965 .977

a/h .5

Lo/h

.1

.2

.3

.4

In-plane shear, Mode 3, K3/K3IO
1. 1.5 2. 3. 4. 5. 6. 8. 10.

.5

.6

.7

.8

.85 .304 443

.9 .249 382
.95 .184 ,299

.899 .927 .935 .939 .942 .943 .943 .943 .944 .944
• 738 .800 .820 .829 .837 .840 .842 .843 .843 .844
• 619 698 .727 .740 .752 .758 .760 .762 .764 .765
• 547 635 670 .688 .704 .712 .716 .719 .722 .724
.503 600 642 .665 .688 .699 .706 .710 .716 .719
.467 577 629 .659 .692 .709 .720 .727 .736 .741
.420 547 613 .653 .700 .726 .743 .755 .770 .780
.350 489 570 .623 .688 .728 .754 .773 .799 .815

529 .588 ,664 .711 .744 .767 .800 .821
470 .532 .617 .672 .711 .740 .781 .809
380 .442 .530 .590 .635 .670 .721 .757

a/h .5
Lo/h

.1
.2
.3

Twisting, Mode 3, K3/KZTO
1. 1.5 2. 3. 4. 5. 6. 8. 10.

• 895 .924 .932 .936 .939 .940 .940 .941 .941 .941
•712 .779 ,801 .811 .819 .822 .823 .824 ,825 .826
• 550 .642 .674 .689 .702 .708 .710 .712 .714 .715

.4 .411 .523 .566 .587 .606 .615 .619 .622 .626 .628
•5 .273 .410 .467 .497 .526 .539 .547 .552 .559 .562

.6 .103 .277 .357 .401 .447 .470 .484 .493 .504 .511

.7 -.152 .074 .'193 .263 .341 .382 .408 .425 .447 .460

.8 -.636 -.335 -.144 -.020 .128 .211 .264 .300 .347 .377

.85 -I.13 -.766 -.508 -.330 -.I09 .020 .I03 .162 .238 .286
.9 -2.17 -1.71 -1.32 -I.03 -.654 -.425 -.273 -.165 -.021 .071
.95 -6.01 -5.27 -4.43 -3.75 -2.81 -2.21 -1.79 -1.49 -I.09 -.823
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Table 4.23 The effect of Poisson's ratio on the

normalized stress intensity factor at the center

of a semi-elliptical crack subjected to out-of-

plane shear, in-plane shear, and twisting loads,

a/h=1.

Out-of-plane shear
Mode 2, K2/K20

In-plane shear

Mode 3, K3/K3IO

Twisting

Mode 3, K3/K3TO

v O..3 .5 O. .3 .5 v.n .3 .5

Lo/h

.i

.2

.3

.4

.5

.6

.7

.8

.85

.9

.95

1.00 1.00
.994 996
.974 982
•936 953
•878 909
•806 851
•721 780
•624 693
•569 640
•503 576
.416 .487

1.00 .935 .927 .921
.997 •820 .800 .787
.987 •725 .698 .682
.966 .666 .635 .617
.932 .634 .940 .580
.886 .615 .577 .555
• 827 .591 .547 .521
.751 .541 .489 .460
.703 .498 .443 .414
.643 .437 .382 .353
• 554 •350 .299 .273

• 932
• 801
• 673
• 562
• 457
• 337
• 155

924 .918
779 .766
642 .623
523 .500
410 •382
277 .242

.074 •028

-.216 -.335 -.398
-.613 -.766 -.844
-1.50 -1.71 -1.82
-4.85 -5.27 -5.44
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Table 4.24 The LSM approximation to the stress

intensity factor at the corner of a semi-

elliptical surface crack subjected to out-of-plane

shear, in-plane shear, and twisting loads, a/h=1,
v=.3.

OUT-OF-PLANE SHEAR IN-PLANE SHEAR TWISTING

k2 (h12) k3 (0) k2 (h12) k3 (O) k2 (h12) k3 (0)

Lo/h

1 .000
2 .000
3 .001
4 .004
5 .009
6 .017
7 .028

8 .042
85 .050

•9 .059
•95 .069

.005 .124 -.000

.033 .237 -.0005

.074 .336 -.002

.125 .421 -.005
.186 .496 -.009
.256 .563 -.014
.332 .625 -.020
.416 .682 -.025
.461 .709 -.028
.507 .735 -.030
.556 .761 -.032

.I16 -.(XX)
.206 -.(XX)5
.272 -.002
.317 -.004
348 -.006
368 -.009
380 -.012
387 -.014

389 -.015
390 -.016
390 -.017
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Figure 4.6 Line-spring model approximation to the

stress intensity factor at the corner of

rectangularly shaped surface crack, a/h=1., P=.3.

The arrow points to the through crack limit.
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stress intensity factor at the corner of a through
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Figure 4.10 Normalized stress intensity factor

profiles for the mode 2,3 line-spring model for a
rectangular crack subjected to out-of-plane shear,
a/h=l., _=-.3
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Figure 4.11 Normalized stress intensity factor

profiles for the mode 2,3 line-spring model for a

rectangular crack subjected to in-plane shear,
a/h=1., u=.3
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Figure 4.12 Normalized stress intensity factor

profiles for the mode 2,3 line-spring model for a

rectangular crack subjected to twisting, a/h=l.,
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Figure 4.13 Normalized stress intensity fsctor

profiles for the mode 2,3 line-spring model for a

semi-elliptical crack subjected to out-of-plane

shear, a/h=1., u=-.3
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Figure 4.14 Normalized stress intensity factor

profiles for the mode 2,3 line-spring model for a

semi-elliptical crack subjected to in-plane shear,
a/h=1., u=-.3
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CHAPTER5

Through Cracks in Shallow Shells

In this chapter the singular integral equations for a series of

collinear cracks in a shallow shell which allows for transverse shear

deformations will be derived. The crack will be assumed to lie along

a principal line of curvature which uncouples the symmetric (mode 1)

from the skew-symmetric (modes 2,3) formulation. The emphasis will be

on crack interaction for some common geometries. Also the equations

are needed for the part-through crack problem of the next chapter.

5.1 Formulation

The governing equations, both dimensional (Eqns. 5.1a-16a,18a,

19a) and non-dimensional (Eqns. 5.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From

equilibrium,

_N
8Nll _N12 8Nxx xy = 0 (5.1a,b)
8x 1 + _x 2 - 0 , 8x + _y

_N12 8N22 8N DN

8x--_ + 8x 2 - 0 ' _Sx + yyoy = 0 , (5.2a,b)

8V1 BV2 D.__.[_ZN ] a [_Z N ]

8xq ÷ 8x---2 ÷ 8x I (Sx I llJ ÷ 8--_1LSx 2 12)

8 [SZ N ] 8 [SZ N ]

i_V 8V

__/x y + 12(1+y){ 8__.[8ZN ] B__[i)ZN ]8x + _y 5 8x[Dx xx) + 8x tOy xyJ +
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_SZN1 fSZN1"r_Lrxxx_J÷_Lr, .j • qCx,y)) =o (5.3a,h)

8Mli 8M12

_x-7 • _-_;-Vl:o ,
81( 8M

xx _ 5
-_x + 8y 12(1+v)v = o (5.4a, h)

8M12 8M22

_Xl_r_;- _ --o ,

8_ 8M

XYsx + _ - 12(1+_)5 Vy : 0 , (5.5a,b)

where • q(x,y) is normal loading to the plate surface and Z(x,y) is the

equation of the mid-plane of the shell. The other variables are

standard shell quantities (see Figs. 2.1,2.3). From kinematical

considerations,

8UlD 8Z BU3D Ou 8Z Ow

ell : 8x-";'- + 8x 1Bx 1 ' exx :_xx + 8xBx ' (5.6a,h)

8U2D 8Z BU3D 8v 8Z 8w

C22 : _-'_2- + 8x2 8x2 ' _yy : _Y + _Y _Y (5.7a, b)

1 8UlD 8U2D 8Z 8U3D 8Z 8U3D]

El2 : 2 [ 8-_2 + _-_1 + 8x 1 8x 2 + Bx2 _X_x1 ]

1 [ Ou 8v 8Z 8w 8Z 8w ]exy =2 _+ _ + ax 8y + By' 8x

BU3D

O1 - 8x 1 + fll '

_W

8x - Ox + fix '

_W

, 8 =_--yy+y

(5.88, b)

(5. ga, b)

(5. IOa, b)
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where 81 and 82 are the total rotations of the normals. For classical

theory they are zero showing that normals to the shell surface stay

normal, i.e. there is no deformation transversely. The constitutive

1 , = N - vN (5.11a,b)
h_ll = E (NIl - vN22) exx xx yy '

- uN ,he22 = (N22 UNll ) , _yy = Nyy xx (5.12a,b)

he12 = _ N12 , exy = (l+V)Nxy , (Sil3a,b)

where E is Young's modulus and v is Poisson's ratio. From bending,

Mll D[ B_I 8_2

M 1 [ _Px 8_
xx 12 (l-v 2)

(5.14a, b)

M22 V [ 8_2 8_I

_ ]
Myy 12(1_u2)

(5.15a,b)

[ 8_1 8_ 2
MI2 = 2 [ +

Mxy = 24 (l+v) _ + '
(5.16a,b)

where

Eh3

D- 12(i_u2)

The linear transverse shear stress-strain relationships are,

(5.17)
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" _V81 - hB V1 ' 8x x (5.18a,b)

1 V2 , 0 =V02 - hB y y '
(5.19a, b)

where

5z (5.20)
B -12(1+v)

From here on only non-dimensional variables will be used. Define

(x,y) such that

xx 8y2 ' yy 8x 2 ' xy 8xSy
(5.21)

Introduce the new unknowns n(x,y) and l_(x,y) defined as follows,

_(x,y) = _-_- - BX
(5.22)

_(x,y) = [ OPx_ + ] - w(x,y) (5.23)

where
C

1

- 5(1-v)

Also it will be assumed that Z(x,y) is limited to the following,

(5.24)

82Z -I 82Z -I O2Z -1

8x2 - R1 ' 8y2 - R2 ' 3xBy - R12 '

(5.25)

thus making the curvatures constant. For convenience the following

constants are introduced,

k14= 12(1_v2) (h/R1)2 , X4 = 12(1_v2)(h/R2)2 ,

4 = 12(1_u2) , )2 12(1_v2))'12 (h/R12)2 = , 7 = )'-2 (5.2s)

If all but )'1 are zero, an axially cracked cylinder results; if _2 is
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the Only

see Fig.

principal

non-zero quantity, then the crack will be circumferential,

2.1. R12 is needed when the crack does not lie along a

line of curvature. After some algebra Eqns. 5.1-19 are

reduced to the following equations,

1
e_ _ {-_ _ _ _ -___V- °x_,"^'V.,}.cx,,__-o,

V4 ÷ )2(I_K;V2)( .2 02 2).22 ,2 .2 82^'V- ,x,,'^.._}_(x,,_:

k4 (1-gV2) q(x,y) ,

(5.27)

(5.28)

(5.29)

(5.30)

q(x,y) = 0 and also confine the crack to a principal line of

(5.31)'

•v2# - # -. : 0 ,

v2_ - n : 0
2

let

(5.33)'

Now

curvature by setting k12 = 0. This reduces Eqns. 5.27,28 to

1

v_ _ {'_"_ ._ _- + A2_X2 ,y) 0 ,^18- _ }wCx=

V4w + X2(I__V2)( .2 82 .2 82

These last four equations will be solved by using Fourier transforms.

First Eqns. 5.31,32 are reduced to one equation in _(x,y),

where

V_ = .2 8 2 ,2 8 2
AIs-_ + A2_x2

The Fourier transform is defined for any function as

(5.34)
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F(x,y) = _ F(x,a) e-iy_ da ,

F(x,a) = _+®F(x,y) e£ya dy
--00

The transforms of the various operators of Eqn. 5.33 are

Pz[v_ ]= --d2F- ._
d2x '

FT[ V4F ] =--d4F- 2a2_ + a4_ ,
d4x d x

FT[ V4V4F ] - dS_ 4a2d6_ 6a4d4_ 4a 6d2_ aSF

-d8x - d6_ + d4--_- d2--_+

•4d4F ..2.2 2d2F )4a4 _
dx

• 4d6F (2),12)2a2+ 2. 4. d4F

(5.35)

9--

()k_a4+ _.AIA2a^,2,24.d-F)d__x- a6X14F

The Fourier transform of Eqn. 5.33 is

,4,d__ 4 222 .42, d__
d_- (4a2+ _^2 ) 6 + (6a4+ k2+ 2_XIX2a + _^2 a ) 4
d8x d x d x

_ (4a6+ zA1^2a-'2"22+ _14a4+ Z_AI^2a^.2.2 4.d_)d2x+ (a8+ Xla44+_a6X2)_4-= 0

(5.37)

which has the solution

4 m.x

_(x,_):j_zRj(a)ea , x>O ,

(5.36)
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8 m.x

#(x,a) = _-_R. (s)e 3
j=5 .1

, x<O , (5.38)

where

mj (pj+a2) I/2• = - , j=1,2,3,4

= +(P _4+a.)1/2o j=5,6,7,8
mj j ,

The roots pj, j=1,2,3,4 are obtained

following characteristic equation,

from the solution

(5.3g)

of the

4 43 2 2 2 2_),4a2 )4)p2p - _)`2p + (2_)`i)`2a - + +

2 2 2 4 _ e),l a + 2)4. 2)`i),2)a p ++ (2_)`i)`2a _ _;), a2 4 2 2 2 2

+ ()`2_)`21)2a4 = 0
(5.40)

This quartic is solved numerically. For large and small a an

asymptotic expansion for the roots is given in section J.1 of Appendix

J. Since the crack has been assumed to lie on a principal line of

curvature, only the portion of the shell for x>Oneed be considered.

The transformed solutions of the other unknowns appearing in Eqns.

5.29-32 are:

fl(x,a) = A(a)e -rx , x > 0 , (5.41)

4 m.x

J=l J (=Kj
, x > 0 , (5.42)

4 m.x

;(x,a) = _R. Ca) J
j=l J (a)Kj (K;pj-1) e

, x>0 , (s.43)

where
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r =- a * _(1-v) J ' (5.44)

22

K. (a) - '_-rJ)'
J

['_Pj-I)" 2,2 ,2 2, (5.45)tmj ^2-^1 a )

The next step is to express the shell quantities in terms of A(a) and

Rj(a), j=I,2,3,4, which are unknowns in the problem to be determined

by boundary conditions as yet unspecified. These expressions are

-_ t+® 2 4 m.x .

Nxx = _.J_®a j__ZlRj(a)e J e -lay da ,

,+® 4 2 m.x
1 [ _-_m.R.(a)e J e-iay da

Nyy- _
J-®j=l 3 J

(s.4s)

(5.47)

t+ ® 4 • .X

Nxy= _ l a_.m.R.(a)e J e-lay da
J-® j=l J J

(5.48)

• +®

l-v -£ _ aA(a)erX "fx = g2 25 e-laYda +
--®

+: 4 m.x .1 f _.m.K.R. (a)e J e-laYda
+_ _ j=aJJJ

(s.4g)

+W

fly l-y 1 _ rA(a)erXe-iaYda_= g"2 2_ _®

t+® 4 m.x .

i ] a_-_K.R_(a)e J e-laYda-_
--® j=l J "_

(s.s0)

11 Jmf+® 4 __v2)KjRj m.x .- _(m (a)e J e-laYda
Mxx X42x _ j=l

-g(l-v)22X4.2--_i_+:arA(a)erXe-iay_ da +
(s.sl)
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M
YY :4_ 1 1 f Z(_m2.-a2)K.R.(_)

),4 2x _ j=l O J J

m.X

e J e-laYda

i erX e-lay
2-_ arA (a) da +

--00

M
xy

t+ m 4

A4 --® j=l _ _ J

m.X

e 3 e-iaY da

_ _(1-v) 2 1 f÷®4_4 2-x -®(a2+r2)A(a)erXe-iaY da

=__ f+® rXe-iayYx . _ aA(a)e da +
--W

(5.52)

, (5.53)

+oo 4 m. x_.m.p.K.R. (a)e J e -iay
+ _ -® j=l 2 J 2 J da ,

(5.54)

+w

Vy = _2)4 --2_-I}_®rA(a) erXe-iay da +

1 i (+® 4 m.x
a_":.p.K.R. (a)e 3 e-iaY

)4.2s J_® j=l J J J da
, (s.s5)

_[x*O Lf'®!{ (x2/x2) 4 o

-mj] } e-ZaYd a

(s.ss)

-+® 4

_Jx*O 1 f _.-:.=2.R.(a) e-iay
= _ ;-=j=l J J da +

._ y(x2/x) 2 _-i f+=
--00

4

a 7_.R_ (_pj-1) e -iayj=l "(a)Kj da , (5.57)

t+ ® 4 2
1 / _-'_m.R. e -iay 8w

= _'_ (a) da + y(X2/),)2 _yy]x*O
_-®j=l J J

(s.ss)
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5.2 Symmetric Loading, Mode 1

There are currently five unknowns in the problem, A(a), and Rj(a)

for j=1,2'3,4. The first step is to reduce these to two unknowns by

using the symmetry conditions,

Nxy(O,y) = 0 ,

Mxy(O,y ) = 0 ,

Vx(O,y)= 0

Then replace the

displacements,

u,(y) = u(x,)/h = u(O + ./h ,I .... -'-' 'x2)

remaining two unknowns with the

u2(Y) = _x(X2) = PX (O+'x2)

The equations that relate ui(y ) to the original unknowns are:

4

A(a) - ia(1-v) mjpjKjRj ,

4

--o
j=lJ] j

Im.K.R.f I ) -1= -_ q2(a)
j=l J 3 J_ _PJ-

4

_m.R. = 0
j=l J J

4

Zm.R.{ X2K _-m2}=-aql(a)
j=l J J 2 j X2 j

where

(s.s0)

(s.so)

(s.sl)

crack surface

(s.s2)

(s.63)

(s.s4)

(s.ss)

(s.se)

(5.67)

(5.68)
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+W •

qk(a) = af_mUk(t) exat dt , k=1,9.

The solution to Eqns. 5.65-68 is

2

R (a) = j=l,2,z,4
k=lmjD(") '

where

D(a) = (KIK2+ K3K4)(Pl- P2)(P4- P3 ) +

+ (KIK3+ K2K4)(Pz- P3)(P2 - P4 ) + (K2K3 + KIK4)(Pl" P4)(P3 - P2) '

711 = a[K2K3(P3- P2 ) +K2K4(P 2- P4 ) + K3K4(P 4- P3)] ,

712 = -a[KIK3(P3- Pl ) + KIK4(P I- P4 ) + K3K4(P 4- P3)]

713 = a[KiK2(P2- Pl ) + KIK4(P I- P4 ) + K2K4(P 4- P2 )] ,

714 =-a[KIK2(P2- Pl ) + KIK3(P 1- P3) + K2K3(P3- P2 )]

-711_22 K2

721- a2_2 a (P4- P3){ [_(l-v)a2÷ liP2- a2(l-v)l -

K3 a2(l_v)} -- a-(P2- P4){ [_(1-v)a2+ 1]P3-

K4
- a--(P3- P2){ ['(l-")a2+ 1]P4- a2(l-v)) '

2

-712X2 + El
a--'(P4- P3){ [_(l-v)a2+ 1]Pl- a2(1-v)} +

722 - a2)_2

K3
+ a-'(Pl- P4)( [_(l-V)a2+ liP3- a2(l-v)} +

(5.69)

(5.70)

(5.71)
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K4

+ a'-(P3- Pl)I [_(1-u)a2+ lip 4- a2(1-u)}

2
-713_ 2 K1

723- a2)2 a (P4- P2){ [_(1-u)a2+ lip I- a2(l-u)) -

K2

- a"(Pl- P4)( ['_(1-u)a2+ 1]P2- a2(l-u)} -

K4

" a(P2- Pl)([e(1-v)a2+ lip 4- a2(1-v)}

2 K1
-714)'2 p2)([K;(1_u) liP I- a2(l-v)} +724- a2_2 + _-(P3- a2+

K2 _" o

+ a(p 1- P3)_[_(l-u)a2+ 1]p 2- a_(1-u)_ +

K3

+ a"(P2- Pl){ [z(1-p)a2+ 1]P3- a2(l-u)} (5.72)

The following two mixed boundary conditions will produce two singular

integral equations for the determination of the crack opening

d_splacements:

Nxx(O+,y) = -f1(y) , y in Ln , (5.73)

ul(y) = u(O +,x2)/h = 0 , y outside of Ln , (5.74)

Mxx(O+,Y) = -f2(y) , y in Ln , (5.75)

u2(Y) = flx(O+,x2) ' 0 , y outside of Ln , (5.76)

where

Ln = (al,bl) , (a2,b2), ... , (an,b n) , (5.77)
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each section (ai,bi) , defining a crack on x=O. Eqns. 5.73,75 with

46,51,64 for y in L become,n

"+® 2 4 m.x
-1 lim / a _R.e 2 e-iay da

-II(Y) - _ x_O j_® j=l J
(5.78)

-^ f l+u iim f+ __rerX_-_.m.p.K. R +
l-v 2 (y) - 2_ x+O _ j=l J J J j

4 m.x 2 4 m.x
1 _p.K.R.e J + a _K.R.e J ) e-iaY da

+i j=lJ JJ j=lJJ
(5.79)

After making use of the odd/even nature of the infinite integrals,

Eqns. 5.78,79 may be written as follows,

t+® 2 4 m.x
1 lim| a _R.e J cosa(t-y) da

-fl (y) = - _ x_O _0 j=l J
(s.80)

S;'( 4-k4 l+u lim __rerX_.m_p_K_R _ +
_/vf2 (y) - , x+O j=l J J J _

1 4 mix 2 4 m.x )
+ a _--_.K.R.e J+_"_ _ pjKjRje j=l J 2 cosa(t-y) da

(s.81)

Next Eqns. 5.69,70,74,76 are substituted into Eqns. 5.80,81 to obtain

1 lira 2 (+® a3 4 _ e J cosa(t-y) da dt +
_ - Uk(t)J _) -= j-fl (y) = f x*O L 0 D m.

n

(s.82)

_)4 l+u lim fL k=_.lUk(t) a 7k]_-vf2 (y) - lr x+O . D(a) .= mj
n

-_rm. p: erxKj { J J +

m.x

, )+_:-_ (m e J cosa(t-y) da dt (5.83)

The infinite integrals must now be analyzed. These integrals may not

exist without the exponential decay in x. In the limit as x gets
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small, the leading order term at a approaching infinity provides the

integral that must be interpreted in the finite-part sense or perhaps

in the Cauchy principal value sense, see Appendix B. Also the large a

behavior must be determined so that the infinite integrals will

numerically converge. The more terms that are known, the more

accurate/less expensive the numerical integration. This analysis is

presented in section J.2 of Appendix J. The form of the equations

after using these results is,

i h dt÷
-fl(y ) - _, JLn(t_y)2

. 12 1 f lnlt_ylu2(tjdt ++plll _L1 lnlt-ylul(t)dt + Pl _ L
n n

1 fA[a3 4 71 j

-_ fL ul(t) ,O_D-_ j_l"-- mj -_} cosa(t-y)da dt +
n

1 ' [A a3 _ 72 j

- i JL Jo "j
n

cosa(t-y) da dt +

f if- _LI ul(t ) I11(t,y) dt- _ L u2(t) I12(t'Y) dt , (5.84)
n n

k4 u2(t)

_-Vf2(y)- - 2,1+// _L (t-y) 2
n

dt +

_ p21 l_ Lf In't-ylul(t)dt- _122 1 f_ Llnlt-y'u2(t)dt +
n n

1 Aa

+_ fL ul(t) _0 D_a) _ 71j Kj {-mrmjpj +
j=l mj

n
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1 __ua2) )+ _-_ (m cosa(t-y) da dt +

÷ L u2(t) 0 .= Jm. ]

n

f -- 1_ --+ 1 ul(t ) 121(t,y) dt + _ L u2(t) 122(t'Y) dt (5.85)
L
n n

All quantities not defined in this chapter are given in Appendix J.

5.3 Symmetric Loadin_t Mode I_ results.

As mentioned at the start of this chapter, the primary motivation

for this analysis is to study the effect of shell curyature on crack

interaction as seen through the SIFs. This problem has been

considered by Erdogan and Ratwani [73], by using the classical shell

theory. As with the single crack solution, the theory used here that

includes transverse shear deformations is better suited for this

problem.

The results presented in Figs. 5.1-4, show the effect of cylinder

radius on the stresses ahead of a single crack (both axial, Figs.

5.1,2, and circumferential, Figs. 5.3,4) of length a/h=1 subjected to

crack surface tension and bending loads. It is observed that although

the primary stresses are not considerably different from those of the

plate solution (R/h_®), the secondary values are now non-zero and

increase with decreasing radius. These effects would be magnified for

larger a/h. The results for axial cracks seem to be more sensitive to
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curvature in tension than for the circumferential crack and the

reverse is true for bending.

The out-of-plane displacement w(O+,y), or bulging of a single

crack has been examined in [28], and has been used as an

interpretation for the trends observed in the crack interaction

problem [73]. In Fig. 5.5 the tension and bending results for an

axially cracked cylinder with radius R/h=lO are presented for various

crack lengths. Fig. 5.6 gives the results for a circumferential

crack. In these plots the zero is fixed at y/a=O in the deformed

state. Again it is observed that the axial crack has more complicated

behavior in tension, while the circumferential orientation shows a

similar trend in bending. For these loadings the w displacement in

the region ahead of the crack tip has more of a tendency to become

negative.

The symmetric double crack SIF solutions are presented in tables

5.1-8. The geometries are again the axially cracked cylinder, a/h=l

in 5.1 (tension) and 5.2 (bending), a/h=2 in 5.3 (tension) and 5.4

(bending), and the circuaferentially cracked cylinder where these four

cases are repeated in tables 5.5-8. For both geometries the primary

stress intensity factor increases for decreasing radius in tension,

and decreases for decreasing radius in bending. Again the axial crack

is more sensitive to curvature than the circumferential crack in

tension and the circumferential crack is similarly more sensitive to

curvature in bending. The secondary SIFs decrease with increasing

cylinder radius except for the outer crack tip of the circumferential

crack, a/h=2 loaded in tension presented in Fig. 5.7. Also the
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secondary values have fluctuations for increasing separation. This

type of behavior was not observed with the primary SIFs as it was by

Erdogan and Ratwani [73]. It is possible that for larger a/h the

curvature effect is strong enough that there can be regions of

increase of the SIFs as the cracks get farther apart. The shortest

crack for which this trend was observed in Ref. [73] was a/h=2.5 for

R/h=5. Because of convergence difficulties and the shallow shell

assumption, longer cracks were not investigated.

5.4 Skew-Symmetric Loadin_t Modes 2t3

There are currently five unknowns in the problem, A(_), and Rj(a)

for j=1,2,3,4. The first step is to reduce this to three unknowns by

using the symmetry conditions,

Nxx(O,y) = 0 ,

Mxx(O,y) = 0

the remainingThen replace

displacements,

(5.56)

(5.87)

unknowns with the crack surface

g3(Y)= u3(y)= w(x2)/h= w(°+'x2)/h'

g4 (y) = u4 (y)-(_2/_) 2yu3 (y) = v(x2)/h- (_2/_)2x2w(x2)/h 2 ,

= v(o÷,x2)/h- (_2/_)2x2w(o÷,xo)/h2,

u4(Y) = v(x2) = g4(y) + (X2/A)2yg3(y) ,

gS(y) = Us(Y ) = py(X2) = py(O+,x2) ,

where u. (y) are the crack opening displacements and gi(y ) are the1
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unknowns to be used. The in-plane displzcement component, i=4,

determines this, see Eqns. 5.57,58. If u4 were used as an unknown the

resulting matrix would not be diagonally dominant and there may be

numerical problems The equations that relate gi(y ) to the original

unknowns are:

A(a)= _s.92)
4

2 _. (m__ua2)KjRj ,
ia_[l-_,) 2r j-1

1¸ 4

TI"_j___lPjKjR j = qb(a) ,

4

4

_-_R.K. (zpj-1) ij=l J J = _q3(a) '

where

÷00

qk(a) = -ia__®gk(t)ae iat dt , k=3,4,5

The solution to Eqns. 5.93-96 is

5 . • _ ._

Rj(a) = _ 7kJqk "_-I
k=3 D(a)- ' J-_2,3,4 ,

where D(a) is the same as Eqn. 5.71 and 7kj are as follows:

-iIK p2-P3 ) K2P2 (Ps-P4))731 = _ 3P3(P4-P2) + K4P4( +

=i
732 a{K3P3(D4-Pl ) + K4P4(Pl-p 3) + KIDI(P3-P4) } ,

(5.93)

(5.94)

(5.05)

(5.gs)

(5.97)

(5._s)
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'/33 = -_{K2P2(P4-Pl) ÷ K4P4(Pl-P2) + KIPl(P2-P4)I. '

=i
734 _{K2P2(P3-P1) + K3P3(Pl-p 2) + KlPl(P2-P3) } ,

741 = {K3K 4(p4-p3) + K2K4(p2-p4) + K2K3(p3-p2)) '

742 = -{K3K 4(p4-p3) + K1K4(Pl-P 4) + K1K3(P3-Pl) 1 ,

743 = {K4K2(P4-p 2) + K1K4(Pl-p 4) + K2KI(P2-Pl) } ,

744 = -{K3K2(P3-P2 ) + K1K3(Pl-P3 ) + K2K1 (P2-Pl)1 '

751 = - (l-u) {K4 (ep4-1) (p3-P2) +K3 (ep3-1) (p2-P4) +K2 (ep2-1) (p4-P3) 1'

752 = (1-u){K4(eP4-1) (P3-Pl)+K3(_P3-1)(Pl-P4)+K 1 (K:Pl-1)(P4-P3i),

753 = -(l-u){K4(K:P4-1 ) (P2-Pl)+K2(eP2-1)(Pl-P4)+K 1 (_P1-1) (P4-P2)I,

754 = (1-u){K3(_P3-1) (P2-Pl)+K2(_P2-1) (Pl-P3)+K 1 (_;Pl-1)(P3-P2)I

(s.gg)

The following mixed

integral equations

displacements :

x(O +V ,y) = -f3(y ) , y in Ln

gs (Y) = w(O*,y)= o

Nxx(O+,y) = -f4(y) , y in Ln

g4 (y) =v (0 + , y) - (x21x) 2y. (o÷ 'y)

boundary conditions will produce three singular

for the determination of the crack opening

- (s.10o)

, y outside of Ln , (5.101)

(s. lo2)

= 0 , y outside of Ln , (5.103)
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=

See

Mxy(O+,y) = -f5(y) , y in Ln , (5.104)

g5(y ) = py(O+,y) = 0 , y outside of Ln
(5.105)

Eqn. 5.77 for the definition of Ln. Eqns. 5.100,102,104 with

5.48,53,54,92 become:

_f3(y) _ If lira;+:_r(_lv)_( 2_va2)KjRjerXx_O +
- j=l

4 m.X

+ _-_.m.p.K.R_(a)e _ ) e-lay da
j=iJjl J

(s.10s)

i tim _+® 4 m.xa_"__.m.R.(a)e3 e-iaY da
-f4 (y) -2_ x*O _® j=l J J

, (5.107)

-2_4o , , l+v tim r+®r 4 2.
_-_Is'Y) 21r x+O J _j_lKjRj[-erX(=2.r2 ) 3-_=2)- Jar(l-u) (m -

_ --m =

- 2iamj e da (5.108)

After asymptotic analysis, see section J.3 of Appendix J, these three

equations may be expressed as,

1 g3(t) 1 2 2 1 g4(t)

-f3(y) = _ _Ln(t_y)2 dt + _)_2[_(X2-_1)- 1_2] _ _L n t-y
dt +

[#33 (X2/X)2#3411- . _ _Llnlt-Ylg3 (t)dt *
n

tAr 1 4

+ _fL1 g3(t ) jOlD_=)j_1Kj[i=73j_(X2/X)274j] x
n

=}
r(l-v) + j J
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I .A._ 4 f_(2 2)
n u j=l + _mj pj

_X211 2 2 12- (_2-h)-72]}_i._(t-y)d.dt

. - _ [-(--,,.")
g5 (t) D(a) KjTsj t- r(1-v) + _mjpj sina(t-y) da dt +

n

; g3(t) 3(t y) dt + - g4(t)' _ I34(t,y ) dt +
n n

+ ; gs(t) I35(t,y) dt , (5. 109)
n

2 2

)Ln 2 t 8A2 J _ -------t-y dt +
n

44 1SL 4_ I SL- #1 7 inlt-ylg4(t) dt - _1 _ inlt-ylg 5(t) dt +

n n

A 4 [3_2+_11

g4 mj74 j _ cosa(t-y) da dt
II

+ ; gs(t) D-_ mj75 j cosa(t-y) da dt +
n

'S, - -+ -" g3(t) I43(t,y) at + -, g4(t) I44(t,y) dt +
n

I]

+ ; gs(t) I45(t,y) dt

n
(s.iz0)
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dt ,

- _:-_z5ty ) - _ JLn(t_y)2

f 55 1 f lnlt_ylg5(t)dt +
- fl154 _1 bnlnlt-ylg4(t) dt - _1 _ Ln

cA. 1 4

+ l fg g3(t)Jo(_j=_-_-lKj [ia73j-(_2/_)274j] x
n.

X [ar[a2+r2(1-y)(m_-v_2)-2amj]) sina(t-y) dadt +

÷ I g4(t) jO _ = Kj74jLar(l_u )
n

1 .A. a 4

+_ _L gS(t)JO_D-'(-'_j=_lKj75jr a2+r2 (m_-_a2)-2amj ]n L'a ) +

+ a(i+v)) cosa(t-y) da dt +

_I fL - I f g4Ct) _54(t,y ) dt ++ x g3Ct) I53(t,y) dt + _ L
n n

+ 1 f gs(t) _55(t,y ) dt , (5.111)
x L

n

5.5 Skew-Symmetric Loading t Mode 2 and 3t results.

The results for the interaction of two equal length (a/h=1)

cracks in a cylinder are presented in tables 5.9-11 (axial) and 5.12-

14 (circumferential). The three possible loadings, in-plane shear,

twisting, and out-of-plane shear are included. The effect of

curvature is not as strong as for the symmetric problem of Sec. 5.3.
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Also the difference between the axial and the circumferential crack is

minimal, especially for twisting, see tables 5.10,13. Both primary

and secondary values of the SIFs changevery little. The only trends

that can be observed with respect to curvature are the mode3

component of the SIF for in-plane shear loading is greater for the

circumferential crack, see tables 5.9,12, and for out-of-plane shear

there is a notable difference in the in-plane shear component of the

SIF, again greater for the circumferential crack, 5.11,14.
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Table 5.1 Mode 1 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to membrane

loading. The inner and outer crack tips are

located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=l, Ol=Nx/h , _=-.3, M_Nx, B*M x.

kM(b)

kM(c)

I_II_RANE LOADING
b/a 0.05 0.125 0.25 0.5 1

R/h

_M

5 2.074 1.634 1.431 1.318 1.265 1.158

10 1.889 1.489 1.299 1.188 1.139 1.081
20 1.825 1.439 1.252 1.139 1.082 1.041

50 1.802 1.420 1.234 1.118 1.056 1.016

_® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.392 1.341 1.304 1.274 1.244 1.158
I0 1.241 1.199 1.169 1.144 1.128 1.081
20 1.182 1.143 1.113 1.087 1.069 1.041
50 1.158 1.119 1.089 1.060 1.039 1.016
*m 1.115 1.112 1.081 1.052 1.028 1.000

5 .248 .169 .124 .093 .084 .103

kB(b ) 10 .192 .136 .103 .076 .060 .071
20 .139 .100 .077 .058 .045 .046

alJ"a"a 50 .081 .060 .047 .037 .028 .025
*® .O(X) .000 .000 .000 .000 .000

kB(C)

_1_

5 .106 .09.6 .089 .087 .093
10 .087 .076 " .068 .061 .059
20 .068 .059 " .052 .045 .040
50 .043 .038 .033 .029 .025
*® .(XX) .000 .000 .000 .O(X)

.103

.071

.046

.025

.O(X)
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Table 5.2 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to bending. The

inner and outer crack tips are located at y/a=*_,

*c respectively where a/h=(c-b)/(2h)=l, o2=6Mx/h" ,

v=-.3, M_Nx, B_M x.

BENDING
b/a 0.05 0.125 0.25 0.5 I

R/h

d_W

5 1.205 1.006 .902 .824 .771 .725

kB(b ) 10 1.240 1.033 .924 .841 .783 .735
20 1.262 1.051 .939 .853 .791 .740

02_"a 50 1.279 1.064 .950 Q 8_2 • 7_ 8
074_

_® 1.294 1.076 .960 .870 .805 .747

5 .828 .809 .790 .770 .751 .725

kB(C) 10 .847 .825 .804 .781 .761 .735
20 .860 .837 .815 .790 .768 .740

o2,J_-'a 50 .870 .846 .823 .797 1774 .747

_® .880 .855 .831 .805 .780 .747

5 .089 .06g .060 .055 .049 .033
10 .048 .038 .033 .031 .030 .022
20 .025 .020 .018 .017 .018 .014
50 .011 .008 .008 .007 .008 .007
_® .000 .000 .000 .000 .000 .000

5 .063 •059 •055 .... 051 •045
10 •036 •034 •033 :031 •030
20 •020 •019 .018- •018 •018
50 .009 •008 •008 •008 •008
-,'® .000 .000 .(XX) .000 .(XX)

.033

.022

.014

.007

.000
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Table 5.3 Mode 1 normalized stress intensity
factors _or symmetric collinear axial cracks in a

cylinder of radius R/h subjected to membrane

loading. The inner and outer crack tips are

located at y/a=_b, _c respectively where a/h=(c-

b)/(2h)=2, al=Nx/h , v=-.3, M+Nx, B+M x.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1

R/h

5 3.904 2.924 2.464 2.117 1.779 1.480

kM(b ) 10 2.442 1.917 1.683 1.553 1.456 1.267
20 2.019 1.593 1.397 1.290 1.245 1.144

Ol,['a"a 50 1.850 1.459 1.272 1.161 1.109 1.033
+® 1.795 1.414 1.229 1.112 1.048 1.000

5 2.553 2.305 2.109 1.889 1.668

kM(C)__ I0 1.674 1.596 1.539 1.480 1.401
20 1.359 1.311 1.278 1.251 1.227

OlJ'a"a 50 1.208 1.168 1.139 1.114 1.099
+® 1.115 1.112 1.081 1.052 1.028

1.480
1.267
1.144

1.033
1.000

5 .371 .206 .140 .140 .175 .166

kB(b)__ 10 .305 .196 .136 .107 .119 .135
20 .251 .170 .122 .088 .080 .099

OlJ'_'a 50 .176 .124 .092 .067 .051 .059
+® .000 .000 .000 .000 .000 .000

5 .197 .189 .189 .193 .188 .166

kB(C)__ 10 .130 .122 .121 .127 .139 .135
20 .103 .092 .085 .082 .089 .099

alJ'_'a 50 .078 .068 .060 .052 .049 .059
+® .000 .000 .000 .000 .000 .000
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Table 5.4 Mode I normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to bending. The

inner and outer crack tips are located st y/a_,

*c respectively where a/h=(c-b)/(2h)=2, o2=b_x/n ,

v=-.3, M_N , B_M .
X X

BBNDING

b/a 0.05 0.125 0.25 0.5 I

R/h

kB(b)

5 1.111 .922 .812 .735 .690 .648
I0 1.167 .966 .846 .757 .708 .668
20 1.211 1.000 .872 .776 .721 .681
50 1.250 1.030 .896 .793 .733 .691
*® 1.291 1.060 .920 .813 .748 .700

5 .745 .726 .709 .690 .673 .648

kB(C)__ 10 .768 .747 .727 .708 .692 .668
20 .789 .765 .743 .721 .704 .681

o2,['_"'a 50 .809 .782 .758 .733 .713 .691
_® .833 .803 .776 .749 .726 .700

5 .321 .224 .173 .128 .086 .059

kM(b)__ 10 .148 .111 .093 .079 .063 .042
20 .079 .060 .052 .047 .042 .029

o2J-_'a 50 .035 .027 .024 .022 .022 .016
• ® .000 .000 .000 .000 .000 .000

5 .190 .158 .130 .I00 .075 .059
10 .098 .088 .079 .068 .055 .042
20 .056 .052 .048 .044 .039 .029
50 .026 .025 .024 .023 .022 .016
_® .000 .000 .000 .000 .000 .000
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Table 5.5 Mode 1 normalized stress intensity

factors _or symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=*b, *c respectively where

a/h=(c-b)/(2h)=l, ol=Nx/h, v=-.3, M*Nx, B*Mx.

ilBn]_NB LOADING

b/a 0.05 0.125 0.25 0.5 1
R/h

5 1.827 1.440 1,252 1.138 1.079 1.036

kM(b)__ 10 1.806 1.423 1.237 1.121 1.059 1.018
20 1.798 1.417 1.231 1.ii5 1.052 1.009

Ol_a 50 1.796 1.415 1.229 1.113 1.049 1.003
*® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.182 1.142 1.111 1.083 1.064 1.036
10 1.162 1.122 1.091 1.063 1.041 1.018
20 1.154 I.I15 1.084 1.055 1.033 1.009
50 1.152 1.113 1.082 1.052 1.029 1.003
.m 1.115 1.112 1.081 1.052 1.028 1.000

5 .200 .143 .II0 .081 .062 .076

kB(b).. 10 .154 .113 .088 .068 .051 .052
20 .107 .079 .063 .050 .038 .033

al_a 50 .058 .044 .035 .028 .022 .018
*® .000 .000 .000 .000 .000 .000

5 .086 .077 .069 .061 .057 .076

kB(C)_. 10 .076 .067 .059 .051 .044 .052
20 .056 .050 .044 .038 .033 .033

o1_ 50 .033 .029 .026 .023 .020 .018
*® .000 .000 .000 .000 .000 .000
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Table 5.6 Mode 1 normalized stress intensity

factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to

bending• The inner and outer crack tips are
located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=l, o2=6Mx/h2, u=-.3, M*Nx, B_M x.

BBNDING

b/a 0.05 0.125 0.25

R/h

0.5 1

5 1.013 .854 .773 •713 .676 .675

kB(b)__ I0 1.125 .942 •847 .775 .725 .707
20 1.199 1.001 .897 .816 .759 .725

o2,[_'a 50 1.253 1.043 .932 .846 .785 .740
_® 1.294 1.076 .960 .870 .805 .747

5

kB(C) 10
20

o2_ 50

.704 .693 .683 •673 .667 .675
•770 •755 .739 •722 .708 •707
.817 .798 .778 .757 .738 .725
.852 .830 .808 .783 .761 .740
.880 .855 .831 .805 .780 .747

5

kM(b ) 10
20

o2J 'a 50
_W

•042 •033 •030 •029 .030 .024
•024 .019 .017 .017 .018 .016
.013 .010 .009 .009 .010 .010
•006 .004 .004 .004 .004 .005
.000 .000 .000 .000 .000 .000

5

kM(c ) 10
2O

o24- 'a ,sO
.@m

•032 •031 .030 •030 •030 •024
•019 .018 •018 .018 .018 .016
•011 .010 .010 .010 •011 .010
•005 .004 .004 .004 .005 .005
.000 .000 .000 .000 .000 .000
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Table 5.7 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=*b, *c respectively where

a/h=(c-b)/(2h)=2, Ol=Nx/h , v=.3, M+Nx, B+Mx.

kM(b)

Ol a

MBMB_NB LOADING

b/a 0.05 0.125 0.25 0.5 1
R/h

-bW

5 1.992 1.569 1.372 1.261 1.211 1.124
i0 1.868 1.472 1.283 1.171 1.118 1.066
20 1.821 1.435 1.248 1.134 1.075 1.034
50 1.801 1.419 1.234 1.118 1.055 1.014
*® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.325 1.278 1.244 1.216 1.193 1.124
10 1.221 1.180 1.149 1.123 1.106 1.066
20 1.177 1.138 1.107 1.080 1.061 1.034
50 1.157 1.118 1.087 1.059 1.037 1.014
+® 1.115 1.112 1.081 1.052 1.028 1.000

5 .212 .133 .084 .055 .061 .112

kB(b ) 10 .236 .163 .117 .081 .065 .099
20 .207 .148 .110 .080 .060 .073

al_a 50 .140 .102 .078 .059 .045 .043
*® .000 .000 .000 .000 .000 .000

5 .056 .058 .062 .073 .093 .112

kB(C ) 10 .082 .075 .070 .067 .072 .099
20 .087 .077 .068 .060 .056 .073

Ol_a 50 .068 .060 .053 .045 .039 .043
*® .000 .000 .000 .000 .000 .000
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Table 5.8 Mode 1 normalized stress intensity

factors for symmetric collinear circumferential
cracks in a cylinder of radius E/h subjected to

bending. The inner and outer crack tips are
located at y/a=*b, *c respectively where a/h=(c-

o2=6Mx/h2 , , B_Mb)/ (2h)=2, _-. 3, M*N x x"

BBNDING

b/a 0.05 0.125 0.25 0.5 1
R/h

5 .714 .612 .555 .520 .516 .530

kB(b)__ 10 .884 .746 .665 .607 .583 .593
20 1.030 .860 .758 .681 .641 .637

o2_"'a 50 1.163 .963 .841 .748 .694 .673
_® 1.291 1.060 .920 .813 .748 .747

5 .517 .516 ,517 .519 .525 .530

kB(C)__ 10 .599 .592 .587 .583 .584 .593
20 .677 .664 .651 .639 .632 .637

o2,l'_a 50 .754 .733 .713 .693 .677 .673
"*to .833 .803 .776 .749 .726 .747

5 .091 .072 .063 .059 .053 .038

10 .061 .048 .043 .041 .040 .029
20 .038 .030 .026 .025 .026 .021
50 .018 .014 .012 .012 .013 .012
_® .000 .000 .000 .000 .000 .000

5 .063 .060 .057 .053 .048 .038
10 .045 .043 .041 .040 .038 .029
20 .029 .028 .027 .026 .026 .021
50 .014 .013 .013 .013 .013 .012
_® .000 .000 .000 .000 .000 .000
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Table 5.9 Modes 2_3 normalized stress intensity

factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to in-plane
shear. The inner and outer crack tips are located
at y/a=*b, *c respectively where a/h=(c-b)/(2h)=l,

a4=Nxy/h , v=-.3, I-bNxy , M-bMXy , O-bYx.

IN-PLAn SHB_

b/a 0.05 O. 125 0.25 0.5 1
R/h

-bW

k2i(b)

a4_'a

5 1.912 1.495 1.290 1.159 1.082 1.031
10 1.860 1.460 1.265 1.141 1.069 1.016
20 1.829 1.439 1.249 1.128 1.061 1.008
50 1.809 1.425 1.237 1.120 1.054 1.003
-b® 1.795 1.414 1.229 1.112 1.048 1.000

k2I (c)

a4/_=

5 1.208

10 1.186
20 1.171
50 1.160
-b® 1.115

1.161 1.123 1.087 1.058 1.031
1.142 1.107 1.074 1.046 1.016
1.129 1.096 1.065 1.039 1.008

1.120 1.088 1.058 1.033 1.003
1.112 1.081 1.052 1.028 1.000

5 -.068

k2T(b)__ 10 -.049
20 -.032

o4,['_"a 50 -.o17
•bW .000

5 -.006

k2T(C) 10 -.008
20 -. 008

o4_'a 50 -. 006
-boo .000

-.044 -.030 -.019 -.014 -.020
-.034 -.025 -.018 -.013 -.014
-.023 -.018 -.013 -.010 -.009
-.013 -.010 -.008 -.006 -.005

.000 .000 .000 .000 .000

-00s -.0_ -.012 -014 -.020
-009 -ooo -.009 -.010 -.014
-008 -.008 -.008 -.00_ -009
-006 -.oos -.oos -.oos -.oos

.000 .000 .000 .000 .000

5 -.008

k30(b) 10 -.002
20 -. 001

o4_a 50 -. 000
-bOO .000

5 .090

k30(c) 10 .051
20 .028

a4_ 50 .012
-boo o000

-.017 -.028 -.039 -. 047 -.050
-.007 -.012 -.018 -.022 -.026
-.003 -.005 -.008 - .011 -.014

-.001 -.002 -.003 -.004 - .006
.000 .000 .000 .000 .000

•078 .068 .059 .052 .050
•045 .039 .034 .029 .026
•024 .022 .019 .016 .014
.011 .009 .008 .007 .006
.000 .000 .000 .000 .000
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Table 5.10 Modes 2&3 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to twisting. The

inner and outer crack tips are located at y/a=*_,

*c respectively where a/h=(c-b)/(2h)=l, a5=6Mxy/h ,

u=-.3, I*Nxy , T*Mxy , O+Vx.

TWISTING

b/a 0.05 0.125 0.25 0.5 1
R/h

d_m

5 .666 .576 .537 .519 .516 .51g
10 .670 .57g .540 .521 .517 .520
20 .672 .581 .541 .522 .518 .521
50 .674 .582 .542 .523 .519 .521
+® .675 .583 .543 .524 .519 .522

5

k2T(a) I0
20

aS_'a 50
@W

•503 .505 .509 .512 .516 .519
•504 .506 .50g .513 .517 .520
.504 .507 .510 .514 .517 .521
.505 .507 .510 .514 .518 .521
•506 .508 .511 .515 .518 .522

5

k2i(b ) 10
20

osK' 50

-.019 -.013 -.010 -.007 - .006 - .007
-.014 -.010 -.007 -.005 -.004 -.005
-. 00g -. 006 -. 005 -. 004 -. 003 -. 003
-. 005 -. 004 -. 003 -. 002 -. 002 -. 002

.O(X) .000 .000 .(XX) .000 .000

5

k2i(c ) I0
20

054"_-"a 50
_m

-._6 -._6 -._6 -._6 -._6 -.007
-.005 -.005 -.004 -.004 -.004 -.005
-.004 -.(X)4 -.003 -.003 -.003 -.003
-.002 -.002 -.002 -.002 -.002. -.002

.(XX) .000 .000 .000 .000 .000

5

k30(b ) 10
20

aSJ_-'a 50
_m

-.004 .007 .025 .047 .062 .069
-.005 .006 .024 .047 .062 .069
-.005 .005 .024 .046 .062 .070
-.005 .005 .023 .046 .062 .070
-.005 .005 .023 .046 .062 .070

5

k30(c ) 10
2O

oSl'_"a 5o
_W

-.100 -.092 -.085 -.077 -.071 -.069
-.102 -.094 -.086 -.078 -.072 -.069
-.103 -.095 -.087 -.079 -.073 -.070
-.103 -.096 -.088 -.079 -.073 -.070
-.104 -.096 -.088 -.079 -.073 -.070

i .
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Table 5.11 Modes 2_3 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to out-of-plane

shear. The inner and outer crack tips are located

at y/a=ib, *c respectively where a/h=(c-b)/(2h)=l,

a3=3Vx/(2h), v=.3, I*Nxy , T_Mxy , O*Vx.

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1
R/h

-I.lO

5 2.876 2.103 1.797 1.682 1.665 1.661
10 2.897 2.116 1.806 1.689 1.672 1.671

20 2.905 2.121 1.810 1.692 1.675 1.674
50 2.908 2.123 1.812 1.694 1.676 1.676
*® 2.909 2.124 1.812 1.694 1.677 1.676

5 1.748 1.689 1.664 1.658 1.661 1.661

k30(c ) 10 1.757 1.697 1.671 1.665 1.669 1.671
20 1.761 1.701 1.674 1.bb7 1.671 1.674

a3_"a 50 1.762 1.702 1.675 1.668 1.672 1.676
*® 1.763 1.702 1.675 1.669 1.673 1.676

5 .016 .024 .031 .040 .049 .053

k2i(b ) 10 .008 .011 .014 .019 .024 .028
20 .004 .005 .007 .009 .011 .014

o3_"a 50 .001 .00_ .003 .003 .004 .006
*® .000 .000 .000 .000 .000 .000

5

k2i (c) I0
2O

50
"4'OO

-. 075 -.067 -.062 -.057 -. 054 -.053
-. 042 -.038 -. 034 -. 032 -. 029 -.028
-.023 -.020 -.019 -.017 -.016 -.014
-. 009 -.008 -.008 -.007 -. 007 -.006

.000 .000 .000 .000 .000 .000

5

k2T(b ) 10
20

50
@W

5

k2T(C ) 10
2O

o'3_-'a 50
.-I._0

-.074 -.155 -.251 -.358 -.429 -.455

-.074 -.155 -.251 -.359 -.433 -.462
-.074 -.155 -.251 -.360 -.433 -.465
-.074 -.155 -.251 -.360 -.433 -.465
-.074 -.155 -.251 -.360 -.433 -.466

.568 .518 .489 .471 .462 .455

.580 .528 .498 .479 .469 .462

.585 .532 .502 .482 .472 .465

.587 .534 .503 .484 .473 .465

.588 .535 .504 .484 .474 .466
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Table 5.12 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to
in-plane shear. The inner and outer crack tips are

located at y/_=*b, *c respectively where a/h=(c-

b)/(2h)=l, a4=Nxy/h , _=-.3, I+Sxy, T_Mxy , O*Vx.

IN-PLANB SHEAR

b/a 0.05 0.125 0.25 0.5 1
R/h

5 1.979 1.539 1.322 1.182 1.098
I0 1.880 1.474 1.275 1.149 1.077
20 1.835 1.443 1.252 1.131 1.064
50 1.810 1.425 1.238 1.120 1.055
+® 1.795 1.414 1.229 1.112 1.048

1.036
1.018
1.009
1.003
1.000

5 1.223 1.174 1.135 1.098 1.066 1.036

k2i(c)_ _ 10 1.192 1.148 1.113 1.079 1.051 1.018
20 1.173 1.132 1.099 1.067 1.042 1.009

a4_'a"'a 50 1.160 1.120 1.089 1.058 1.034 1.003
*® 1.115 1.112 1.081 1.052 1.028 1.000

k2T (b)

5 -.142 -.093 -.063 -.040 -.025
10 -.089 -.061 -.044 -.031 -.021
20 -.053 -.037 -.028 -.021 -.015
50 -.025 -.018 -.014 -.011 -.009
*® .000 .000 .000 ' .000 .000

-.025

-.017
-.011
-.006

.000

5 .013 .007 .001 -.004 -.011 -.025

k2T(C)__ 10 -.001 -.003 -.005 -.007 -.009 -.017
20 -.005 -.006 -.007 -.007 -.007 -.011

o4_a 50 -.005 -.005 -.005 -.005 -.005 -.006
*® .000 .000 .000 .000 .000 .000

5 -.018 -.041 -.067 -.098 -.125 -.150

k30(b)__ 10 -.005 -.015 -.028 -.043 -.057 -.075
20 -.002 -.006 -.013 -.020 -.027 -.038

a4_-'a 50 -.000 -.002 -.005 -.008 -.011 -.015
*® .000 .000 .000 .000 .000 .000

5 .296 .260 .230 .199 .173 .150

k30(c ) 10 .156 .138 .122 .107 .093 .075
20 .080 .071 .063 .056 .049 .038

o4,r'a-'a 50 .033 .029 .026 .023 .020 .015
*® .000 .000 .000 .000 .000 .000
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Table 5.13 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to
twisting. The inner and outer crack tips are
located at y/a=_b, _c respectively where a/h=(c-

b)/(2h)=l, a5=6Mxy/h2 , v=-.3, I_Nxy , T*Mxy , O*Vx.

TqrlSTING

b/a 0.05 0.125 0.25 0.5 1
R/h

5

k2T(b ) 10
2O

aS,_-'a 50

.665 .574 .535

.670 .578 .539

.672 .580 .541

.674 .582 .542

.675 .583 .543

_W

5

k2T(C ) 10
2O

Os,r  so

.517 .514 .519

.520 .516 .520

.522 .518 .521

.523 .518 .521

.524 .51g .522

.502 .505 .508 .512 .516 .519
• 503 .506 .50g .513 ,516 -520
.504 .507 .510 .513 .517 .521

.505 .507 .510 .514 .517 .521

.506 .508 .511 .515 .518 .522

5 -.035 -.023 -.017 -.011 -.008 -.010

k2I(b ) 10 -.022 -.015 -.011 -.008 -.006 -.006
20 -.014 -.010 -.007 -.005 -.004 -.004

a5,1"_"a 50 -.007 -.005 -.(X)4 -.003 -.002 -.002
_® .000 .000 .O(X) .000 .000 .000

5 -. oog -. 008 -. 008 -. 007 -. 007 -. 010

k2i(c ) I0 -.007 -.006 -.006 -.005 -.005 -.006
20 -. 005 -. 004 -. 004 -. 004 -. 004 -. 004

aS_ 50 -. 003 -. 002 -. 002 -. 002 -. 002 -. 002
*® .000 .000 .000 .000 .000 .000

5 -.003 .009 .028 .050 .065 .069

k30(b ) I0 -.004 .006 .025 .047 .063 .070
20 -.005 .006 .024 .047 .062 .070

a5,J'_-'a 50 -.005 .005 ,023 .046 .062 .070
+® -.005 .005 .023 .046 .062 .070

5 -.098 -.090 -.083 -.075 -.070 -.06g

k30(c) 10 -.102 -.0g4 -.086 -.077 -.072 -.070
20 -.103 -.095 -.087 -.078 -.073 -.070

o5_'a 50 -.103 -.096 -.088 -.079 -.073 -.070
_® -.104 -.096 -.088 -.079 -.073 -.070
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Table 5.14 Modes 243 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
out-of-plane shear. The inner and outer crack tips
are located at y/a=_b, _c respectively where

a/h= (c-b) / (2h) =1, o3=3Vx/(2h) , v=. 3, I*Nxy, T_Mxy,

O_V x •

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1

R/h

,4,W

5 2.565 1.897 1.632 1.537 1.532 1.547

k30(b).. 10 2.793 2.047 1.751 1.641 1.628 1.635
20 2.873 2.100 1.793 1.678 1.661 1.664

o_l'_a. 50 2.902 2.119 1.809 1.691 1.673 1.674
D _® 2.909 2.124 1.182 1.694 1.677 1.676

5 1.561 1.526 1.514 1.518 1.532
I0 1.694 1.643 1.621 1.618 1.626
20 1.742 1.684 1.659 1.653 1.658
50 1.759 1.699 1.672 1.666 1.670
_® 1.763 1.702 1.675 1.669 1.673

1.547
1.635
1.664

1.674
1.676

5 .040 .058 .076 .099 .124 .152

k21(b)__ 10 .021 .030 .039 .050 .063 .081
20 .010 .015 .019 .025 .031 .042

o3_a-'a 50 .004 .006 .008 .010 .012 .017
*® .000 .000 .000 .000 .000 .000

5 -.222 -.201 -.187 -.176 -.164 -.152

k21(c)__ I0 -.127 -.114 -.106 -.099 -.093 -.081
20 -.067 -.060 -.056 -.052 -.049 -.042

o3_a"a 50 -.027 -.025 -.023 -.022 -.020 -.017
*® .000 .000 .000 .000 .000 .000

5 -.067 -.141 -.230 -.331 -.400
10 -.071 -.151 -.244 -.350 -.423
20 -.073 -.154 -.249 -.357 -.430
50 -.074 -.155 -.251 -.359 -.433
*® -.074 -.155 -.251 -.360 -.433

-. 422
-.452
-.462
-.465
- .466

5 .500 .460 .437 .424 .418 .422

k2T(C)__ 10 .557 .509 .480 .463 .454 .452
20 .578 .526 .496 .477 .467 .462

a3,]'_"a 50 .586 .533 .502 .483 .472 .465
*® .588 .535 .504 .484 .474 .466
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Figure 5.1 Stresses ahead of an axial crack
(a/h=l) in a cylinder subjected to membrane
loading, v=.3.
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Figure 5.2 Stresses ahead of an axial crack

(a/h=l) in a cylinder subjected to bending. The

dashed line corresponds to R/h+®, u=.3.

206



C)'aok

C_

L

Figure 5.3 Stresses ahead of a circumferential
crack (a/h=l) in a cylinder subjected to membrane
loading, v=.3.
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Figure 5.4 Stresses ahead of a circumferential
crack (a/h=l) in a cylinder subjected to bending,
v=.3.
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Figure 5.5 Out-of-plane displacement w(O+,y) as

measured from y=O in the deformed position for a
cylinder, with an axial crack subjected to either

membrane loading (Om=_x/h) or bending (ob=g_x/h2),

//=-.3.
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Figure 5.6 Out:of-plane displacement w(O+,y) as

measured from y=O in the deformed position for a
cylinder with a circumferential crack subjected to

either membrane loading (om=_x/h) or bending

(ob=g_/h2), u=.3.
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CHAPTER 6

Part-Through Cracks in Shells

The singular integral equations for part-through crack problems

are obtained •directly from the corresponding through crack equations

given in •Chapter S. The compliance relations of Chapter 2 and

Appendix C are used even though they correspond to the strip solution

which does not take into account shell curvature. The plane strain

problem for an edge cracked cylinder [74], and the axisynetric case

of a circumferentially cracked cylinder [75], could be used to obtain

these coefficients, but there are convergence problems for sheli-like

geometries, and also a different set of constants would be required

for each curvature. Since the assumption of shallowness has already

been applied, neglect of this curvature effect should not be too

significant, see [60]. The line-spring model solutions are normalized

with respect to the edge crack solution as explained in section C.4 of

Appendix C. Perhaps if the solution is Considered to be normalized

with respect to the actual Wlong crack w shell solution instead of the

plane strain strip value, the accuracy of the result will improve.

This idea is similar to what happens when a compliance curve that is

not too accurate is used. The resulting ratio is more accurate than

the actual value of the SIF.

There are some basic differences between plate and shell problems

besides the mathematical complication that shell curvature introduces.

In a plate, loading at "infinity" for any of the five loads of tension
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(Nxx), bending (Mxx), out-of-plane shear (Vx), in-plane shear (Nxy),

and twisting (Mxy), results in an "uncracked" solution that is

constant throughout the plate. Therefore, in the perturbation

problem, the solution to the various loading cases is obtained by

simply applying the negative of these loads to the crack surfaces.

The process of determining the perturbation loads in shells for a

given external loading is not as e_sy. In a cylinder, for example,

any loading at infinity can result only in membrane or in-plane shear

at thecrack region, (excluding minor secondary contributions). The

loading cases of bending, out-of-plane shear and twisting become

important when an external force is applied near the crack region. To

make use of the various shell solutions, the solution to the shell

without a crack must first be obtained. Thiswill in general require

numerical techniques.

With the present formulation the surface crack can lie along any

principal line of constant curvature of a shell. This uncouplesthe

symmetric model loading, from the skew-symmetric loading that couples

modes 2 and 3. If the crack were positioned at an arbitrary angle,

then all three fracture modes interact, see [30]. The most practical

problem represented here would be a mode 1 contribution resulting from

torsion of a cylinder.

The different geometries that are considered include the sphere,

cylinder and circular pipe elbow, which is represented by a toroidal

shell. Also the crack may lie on the outside or inside of the shell

by imposing positive or negative curvature, respectively. The
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emphasis in the results will be the effect of curvature on the SIF at

the maximum penetration point of a semi-elliptical surface crack.

6.1 _ode 1.

From Eqns. 5.84,85, 2.31, and from the superposition of Fig. C.1,

the integral equations for the symetrically loaded part,through crack

are found to be:

1 l fb-- dt + _ = u i(t)Kil(z) dt2_ a (t-y) 2 a

- 711u1(Y) - 712u2 (y) = -_x = -_1 '

1 2 ,b

dt + f'_'Jal=l ui(t)Ki2(z) dt
(1_v2) u2(t)
_42_ a (t-y) 2

- 712u1(Y) - 722u2 (y) = -_x = -_2/6 '

(6.1)

(s.2)

where the kernels may be obtained from Eqns. 5.84,85 and Appendix J.

J

The LSM for inner surface cracks in a pressurized cylinder is compared

to solutions from Raju and Newman [34] in Fig. 6.1, and to solutions

from O'Donoghue et. al. [40] in Fig. 6.2. The only case where

agreement is poor is for the semi-circular crack with a/h=Lo/h=.2 ,

which is a rather severe geometry for the model. Outward bulging of

the shell surface along the line of the crack is presented in Fig. 6.3

for an outer circumferential crack in a cylinder. Fig. 6.4 shows the

inner crack case where the bulging is inward. The tension case of 6.4

shows that the depression does not always increase as the crack gets

deeper (i.e. increasing Lo/h) because of the tendency of the crack to
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bulge outward when there is no net ligament. The net ligament causes

a bending component that forces the surface inward and these two

effects oppose each other. Therefore it would be difficult to predict

crack depth by a measurement from the back surface.

To date, as far as I know, the LSM has only been applied to

cracked cylinders, see for example [49,60]. In tables 6.1-5 the

solution to the spherical shell is presented for both inner and outer

cracks of varying depths and lengths. It is noted that the results

are sensitive to curvature. Also for a given geometry the SIFs are

higher for the external crack than for the internal crack. In table

6.6 the SIF distribution along the contour of a semi-elliptical crack

located at different positions in a toroidal shell is presented. The

four locations, denoted A through D, are shown in Fig. 6.5. Also the

crack may be internal or external, making a total of eight cases that

are given in this table, and in the tables that follow. It is noted

that the functional behavior of the SIF does not vary much from

position to position. This supports giving only the value of the SIF

at the center of the crack. Therefore, the plate results may be used

to get an idea about this distribution given the crack size and

maximum penetration value. These results are given in Chapter 4 for a

wide

for

the cylinder

R/h=lO. The

Ri/R,

range of crack lengths and depths. The toroidal shell results

mode 1 loading are presented in tables 6.7-22. In these tables

radius to shell thickness -ratio is held constant at

main parameter study is the elbow curvature given by

see Fig. 6.5. Values of crack length to shell thickness (a/h),

w
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of .5, 1., 2., 4., are used. As expected, the longer the crack, the

more the influence of elbow curvature. The results given in the

tables are for constant crack surface membrane and bending loads. It

should be noted that in order to obtain the solution to the practical

case of an internally pressurized toroidal shell, or to Shy other

external loading, the uncracked shell solution must first be obtained.

In general this solution will not be constant over the length of the

crack. This is not a concern with either the sphere or cylinder

because the uncracked solution is constant due to symmetry. However,

it is most likely the case that the variation is not considerable and

that the results in the tables may be directly applied once the actual

crack surface loading is determined.

6.2 Modes 2 and 3

From Eqns. 5.109-111, 2.31, and from the superposition of Fig.

C.1, the integral equations for the skew-symmetrically loaded part-

through crack may be expressed as:

1_ b gs (t)
Ir a (t-y) 2

21 2 2 1 f g4 (t)
dt

1
+ _ i:S a gi(t)Kis(Z) dt - 7ssUs(Y) = -_x = -8(1+u)/5o3 ' (6.3)

1 _b g4(t) 1 5 ,b

--2,_a (t-y)2 dt + _i___-_.3Jagi(t)Ki4(z) dt

- 744u4(Y) - 745u5(Y) = -_xy = -_4 ' (8.4)
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gs(t) [sX2+X l, gs(t)
X4211 a (t-y) 2 dt + I---_X2 j _ _L t-y

n

dt

1 3 tb

+ _:i_3 ja gi(t)Ki5(z) dt - "/54u4(Y) - 755u5(Y) = -iixy = -_5/6 ,

where,

g3(y) = w(O+,y) = u3(Y ) ,

g4CY) =v (0+ ,y)- (X22/X) 2yw(O +,y)

u4(Y) = g4 (y) + CX22/X)2yg3 (y) '

gS(y) = py(O+,y) = Us(Y )

(6.5)

= u4(Y)-(X22/)_)2Yu3(Y ) ,

(6.6)

(6.7)

(6.8)

(8.0)

The Fredholm kernels may be obtained from Chapter 5 and Appendix J.

Because of the assumption made in Eqn. 2.12 (see Eqn. 6.10)

concerning self-similar crack growth under mode 2 loading, solutions

to these equations apply only to cases where crack growth is coplanar.

There are no solutions to compare with as in the mode 1 problem. If

the results can be verified, then the mixed-mode solution involving

all three modes should give good results. However the solution is not

expected to be as accurate as for mode 1, since it was observed in

Chapter 4 that there is very little difference in the value of the

secondary SIF between the rectangular and the semi-elliptical

profiles. In the latter case the secondary value should become of

primary importance as the ends are approached because of changing

crack front curvature. Physically the problem with the model is that

everything is calculated in a plane perpendicular to the plate

216



surfaces, while the SIF is defined in a plane normal to the crack

front. Considering this it is remarkable thatthe comparisons with

the finite element solutions are so close for mode 1, see Figs. 4.1-4,

6.1,2. Perhaps the mechanism of the model is such that the energy

release rate, the expression for which is repeated below,

is more accurate than the individual values of the SIFs. If this is

true, then it may explain why the secondary value of the line-spring

SIF does not behave as expected, i.e. the above combination of K2 and

K3 is more accurate. In the mode 1 case, it doesn't matter because

there is only one non-zero value. Since the secondary value is zero

in the center of the crack due to symmetry, the primary SIF may not be

too affected by the rest of the curve. This of course is the most

dependable value calculated by the LSg.

The results in tables 6.23-34 are for axial and circumferential

semi-elliptical cracks in a cylinder of varying radius. Crack lengths

and depths are also varied. The value at the center of the crack is

reported. In the case of twisting, as can be seen from the plate

results of Chapter 4, the maximum is typically at the ends. This is

because of the strip results from Appendix C, table C.1 (aS) , where

the SIF decreases as the crack goes deeper into the plate. As with

the mode 1 results, the plate solutions may be used to get an idea of

the character of the distribution. The results for out-of-plane shear

are nearly insensitive to radius, except for long and deep cracks.

The in-plane shear, the most important loading case, behaves in a more
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reasonable way. More results for the toroidal shell are presented in

tables 6.35-46 for a/h=l,2, and R/h=lO. As with the mode 1 tables,

the elbow curvature is the parameter that is of most interest. Again

these results are not very sensitive to curvature. This should be

expected from the results of the cylinder.
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Table 6.1 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=.5, v=.3.

MBMBRAI_ LOADING

External crack

Lolh .2 .4 .6

R/h

.8 .95

5

Zl(O ) 10
2O

Klm 50

.735 .400 .182

.733 .396 .179

.731 .394 .177

.730 .392 .175
_® .729 .390 .174

Internal crack

.0525 .00566

.0512 .00554

.0506 .00549

.0502 .00547

.0499 .00547

5 .718 .380 .172 .0514 .00594

KI(O)__ 10 .723 .384 .173 .0506 .00571
20 .725 .386 .173 .0502 .00559

Klm 50 .727 .388 .174 .0500 .00552

+® .792 .390 .174 .0499 .00547

BBNDING
External crack

gO/h .2 .4

R/h

.6 .8 .95

5 .716 .318

K1(0) 10 .713 .313
20 .712 .310

Klb 50 .710 .308

.m .709 .306

.0630 -.0244 -.00910

.0586 -.0262 -.00935

.0562 -.0271 -.00947

.0546 -.0276 -.00955

.0532 -.0281 -.00960

Internal crack

5 .698 .294

K1(0) 10 .702 .298
20 .705 .301

Klb 50 .707 .303
*® .709 .306

.0501 -.0270 -.00925

.0508 -.0277 -.00943
_0516 -.0280 -.00951

t

.0524 -.0281 -.00957

.0532 -.0281 -.00960
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Table 6.2 Mode ] normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=l, v=.3.

MEMBRANELOADING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .824 .527 .267 .0834 .00967

--KI(O) 10 .822 .520 .258 .0784 .00895
20 .821 .515 .252 .0756 .00862

Kim 50 .819 .511 .248 .0739 .00844

_® .817 .507 .244 :0725 .00833

Internal crack

5 .798 .481 .236 .0762 .00999

KI(O)__ I0 .805 .490 .237 .0739 .00921
20 .810 .496 .239 .0729 .00879

Klm 50 .814 .501 .242 .0725 .00852

*® .817 .507 .244 .0725 .00833

BENDING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

KI (0) 10
2O

Klb 50

.812 .464 .160

.810 .456 .150

.808 .450 .143

.807 .447 .138
_® .804 .441 .133

Internal crack

-.0022 -.0086
-.0039 -.0096
-.0073 -.0101
-.0096 -.0104
-.0114 -.0106

5 .782 .409 .121

KI(O)__ 10 .791 .419 .123
20 .796 .427 .126

Klb 50 .801 .434 .129

_® .804 .441 .133

-.0087 -.0093
-.0107 -.0100
-.01_4 -.0103
-.0116 -.0105
-.0114 -.0106
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Table 6.3 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface

crack in a spherical shell, a/h=2, v=-.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

KI(O ) 10
20

Klm 50

•882 .643 .375 .136 .0180
•886 .644 .366 .124 .0152
•886 .641 .356 .116 .0136
•885 .635 .347 .109 .0126

• ® .883 .627 .336 .104 .0120

lnternal crack

5 .851 .572 .310 .111 .0169

KI(O ) I0 .862 .589 .315 .106 .0147
20 .870 .602 .320 .104 .0134

Klm 50 .876 .613 .326 .103 .0126

_® .883 .627 .336 '104 .0120

BENDING
External crack

Lo/h .2 .4

R/h

.6 .8 .95

5 .873 .505 .284

K1 (0) 10 .878 .598 .275
20 .879 .595 .264

Klb 50 .878 .589 .253

*® .875 .578 .239

.0545 -.0034

.0421 -.0065

.0326 -.0084

.0251 -.0097

.0180 -.0107

Internal crack

5 .839 .513 .204

KI(O)__ I0 .852 .533 .212
20 .861 .549 .219

Klb 50 .868 .563 .227

*® .875 .578 .239

.0231 -.0064

.0188 -.0083

.0170 -.0094
.0166 -.0102
.0180 -.0107
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Table 6.4 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=4, v=.3.

iiBMBRM_ LOADING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .907 .708 .458

KI(O)__ 10 .922 .739 .480
20 .929 .751 .484

Klm 50 .932 .753 .475

+® .930 .741 .450

.193 ".0316

.191 .0273

.182 .0232

.168 .0196

.149 .0165

Internal crack

5 .884 .645 .384

K1 (0) 10 .900 .674 .400
20 .911 .695 .413

Klm 50 .920 .715 .426

+® . 930 .741 .450

.154 .0274
.151 .0237
.147 .0208

.146 .0184

.149 .0165

BENDING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .899 .665 .372

KI(O)__ I0 .916 .704 .404
20 .925 .720 .412

Klb 50 .928 .723 .403

+® - .926 .710 .374

.109 -.00620

.119 -.00281

.104 -.00130

.0888 -.00533

.0663 -.00918

Internal crack

5 .875 .595 .287

KI(O ) 10 .892 .629 .309
20 .904 .655 .326

Klb 50 .914 .678 .343

+® .926 .710 .374

.0646 -.00005

.0634 -.00274
.0614 -.00528
.0608 -.00747
.0663 -.00918
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Table 6.5 Mode i normalized stress intensity

factors at the center of a semi-elliptical surface

crack in a spherical shell, a/h=lO, _=-.3.

Lo/h

R/h

KBMB]JkNBLOADING.
External crack

•2 •4 •6 .8 .95

KI(O)

Klm

.....

10 •932 •771 •537 .243 •0429
20 •950 •820 •598 •272 •0429

50 .963 .856 .642 .288 .0391
*® •968 •862 •624 •245 •0255

Internal crack

KI(O)

Klm

.....

10 •923 •741 •487 •207 •0373
20 •939 •779 •526 •219 •0355
50 .952 .813 .562 .227 .0318
• ® •968 •862 •624 •245 •0255

KI(O)

Klb

KI(O)

Klb

Lo/h

R/h

BENDING

Externa! crack

.2 .4 .6 .8

.....

I0 .926 •735 •455 •154 .0122
20 •945 .793 •533 •194 .0144
50 .960 .838 .592 .219 .0120
*® •966 •846 •576 •173 -•00266

5

I0
20

5O
'@W

•917
•934
•948
•966

Internal crack

•403
•453
.499
•576

•119

•136
•149
•173

•702
•748
•788
•846

.00664

.00605

.00319

-.00266
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Table 6.6 Distribution of the mode 1 normalized

stress intensity factor along a semi-elliptical
surface crack in a toroidal shell located at

different positions, see Fig. 6.5, a/h=l, R/h=lO,

Ri/R=3 , Lo/h=.4 , _-.3.

MEMB_kh_ LOADING

Position* A

y/a
O.

.I

.2

.3

.4

Internal External
B C D A B C

.5

.6

.7

.8

.9

.95

.98

.493 .497 .499 .501
• 492 .496 .498 .500
•489 .493 .495 .497
• 484 .489 .490 .492

• 477 .482 .483 .485
•468 472 .473 .476
•455 460 .461 .463

•439 444 .445 .447
•418 423 .423 .426
•389 394 .393 .397
•367 373 .371 .375
•348 .353 .352 .355

D

.512 .521

.511 .519

.507 .516

.502 .511

.495 .503
.484 .493
.471 .479

505 .517
504 .516
501 .513
496 .508
489 .500
479 .490
466 .477

.454 .462 .450 .460

.432 .439 .428 .437

.401 .408 .398 .406

.379 .385 .376 .384

.358 .364 .355 .363

BENDING

Internal
Position* A

y/a
O.

1

2

3

4

B C D

.423 .429

.424 .430

.427 .433

.432 .437

.438 .444
5 .446 .452

6 .456 .461
7 .466 .472
8 .476 .482
9 .484 .491
95 .485 .492
98 .481 .488

431 .433
432 .434
435 .437
439 .442
446 .448
453 .456

462 .466
472 .476
482 .486,
490 .494
490 .495
486 .491

External
A B C V

446 .457 .439 .453
447 .458 .439 .454
449 .460 .442 .456
454 .464 .447 .461
459 .470 .453 .466
467 .477 .460 .473

.475 .485 .469 .482

.484 .493 .478 .490

.493 .502 .488 .499

.499 .507 .495 .505

.499 .507 .495 .505

.494 .502 .491 .500
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Table 6.7 Mode I normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A o_ Fig. 6.5, a/h=.5, R/h=lO, u=.3.

I[EMBRANB LOADING
External crack

Lo/h- .2 .4 .
6

Ri/R

.8 .95

K1 (0) 1 .731 .393 .177
3 .730 .393 .176

Klm 5 .730 .392 .176

_® .72g .3gi .175

.0506 .00550

.0505 .00549

.0505 .0054g

.0503 .0054g

Internal crack

KI(O ) 1 .724 .385 .173 .0502 .00561
3 .724 .385 .173 .0502 .0055g

Klm 5 .725 ,.386 .173 .0501 .00559

_® .725 .386 .173 .0501 .00556

k.

BENDING
External crack

Lo/h .2 .4

Ri/R

.6 .8 .95

KI(O)__ 1 .711 .309
3 .711 .308

Klb 5 .710 .308

_® .710 .307

.0561 -.0270 -.00943

.0556 -.0271 -.00945

.0554 -.0272 -.00945

.0548 -.0274 -.00947

Internal crack

K1 (0) 1 .704 .29g
3 .704 .300

Klb 5 .7O4 .300

*® .705 .301

.0510 -.0280 -.00948

.0511 -.0280 -.00949

.0512 -.0280 -.00950

.0514 -.0280 -.00950
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Table 6.8 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=.5, R/h=lO, v=.3.

i_MBRAffB LOADINC
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O)__ 1 .733 .396 •178 .0509
3 .733 .396 .178 .0509

Klm 5 .733 .396 .178 .0509

*® .732 .395 .178 .0508

.00551

.00551
•00551
.00550

Internal crack

1 .725 .386 .173 .0504 .00565
KI(O) 3 .725 .386 .173 .0504 .00564

Klm 5 .725 .387 .173 .0504 .00564
-_ .726 .387 .174 .0504 .00562

BENDING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O).. 1 .713 .312
3 .713 .312

Klb 5 .713 .312

_® •713 .312

.0578 -.0266 -.00943

.0576 -.0267 -.00945

.0576 -.0267 -.00945

.0574 -.0268 -.00947

Internal crack

1 .705 .300
3 .705 .3Ol

Klb 5 .705 .301
*® .706 .302

.0516 -.0278 -.00949

.0518 -.0278 -.00950
.0519 -.0278 -.00951
.0521 -.0279 -.00952
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Table 6.9 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=.5, R/h=lO, u=.3.

MBM_RANB LOADING

External crack

Lo/h- . 2 .4 . 6

Ri/R

.8 .95

KI(O ) 1 .727 .388 .174
3 .728 .390 .175

Klm 5 .729 .391 .175

*® .729 .391 .175

.0505 .00560

.0503 .00551

.0503 .00550

.0503 .00549

Internal crack

K 1 (0) 1 .72g .3g2 .176 .0506 .00555
3 .726 .388 .174 .0502 .00554

Klm 5 .726 .387 .173 .0501 .00555
*= .725 .386 .173 .0501 .00556

BBNI)ING
External crack

Lo/h .2 .4 .6

Ri/R

KI(O)__ 1 .707 .303
3 .708 .305

KIb 5 .709 .306

_ _® .710 .307

- " Internal crack

K1 (0) 1 .710 .307
3 .707 .303

Klb 5 .706 .302
-_m .705 .301

.8 .95

.0532 -.0275 -.00946

.053g -.0275 -.00948

.0542 -.0275 -.00948

.0548 -.0274 -.00947

.0551 -.0271 -.00944

.0525 -.0278 -.00950

.0520 -.0279 -.00950

.0514 -.0280 -.00950

227



Table 6.10 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=.5, R/h=10, /_=-13.

MEMBRAI_B LOADINg
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O)__ 1 .729 .392 .176 .0506 .00555
-- 3 .732 .394 .177 .0507 .00551
Klm 5 .732 .395 .177 .0507 .00551

*® .732 .395 .178 .0508 .00550

Internal crack

KI(O)__ 1 .727 .388 .174
-- 3 .726 .388 .174
Klm 5 .726 .388 .174

*® .726 .387 .174

.0505 .00560

.0504 .O0561

.0504 .O0561

.0504 .00562

BBNDING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

K1 (0) 1 .710 .307
3 .712 .311

Klb 5 .713 .311

*® .713 .312

.0551 -.0271 -.00944

.0567 -.0270 -.O0948

.0570 -.0269 -.O0948
.0574 -.0268 -.00947

°
Internal crack

KI(O)__ 1 .707 .303
3 .706 .303

Klb 5 .706 .302

*® .706 .302

•0532 -.0275 -.00946
•0525 -.0278 -.O0952
.0523 -.0278 -.00952
•0521 -.0279 -.00952
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Table 6.11 Mode I normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=1, R/h=lO, v=.3.

Lo/h

RJR

I/Bi_iLOIB LOKI)ING
External crack

.2 .4 .6 .8 •95

K1(0)

Klm

1 •819 .513 .252 .0757 •00866
3 .819 .512 •250 .0752 .00861
5 .818 .511 .250 •0749 .00859

*® .817 .509 •248 .0743 .00854

Internal crack

KI(O)

Klm

1 •807 .492 .237 .0727 .00885
3 .808 .493 .237 .0725 .00878
5 .808 .493 .238 .0724 .00875

• m •810 •494 .238 •0723 .00867

• #a

,.0/n

Ri/R

BENDING
External crack

.2 .4 .6

K1 (0) 1 .807 .448 .142
3 •806 •446 •140

Klb 5 .805 .445 •139

*® .804 .443 .137

K1(o)

K1 b

.8 .95

Internal crack

1
3
5

,4.00

.793

.794
•794
.795

•422

•423

•424

•425

• 123
• 124
• 124
• 124

-.0071 -.0100
-.0078 -.0100
-.0081 -.0101
-.0089 -.0102

-.0117 -.0102
-.0119 -.0103
-.0119 -.0103
-.0120 -.0103
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Table 6.12 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=l, R/h=lO, v--.3.

nMB_AI_ LOADING
External crack

Lo/h .2 .4 .6

Ri/R

.8 .g5

K1 (0) 1 .823 .520 .257
3 .824 .521 .257

Klm 5 .884 .520 .256

*® .824 .520 .256

.0773 .00879

.0771 .00875

.0770 .00874

.0768 .00871

Internal crack

KI(O ) 1 .809 .496 .240 .0738 .00901
3 .810 .497 .241 .0738 .00897

Klm 5 .811 .498 .241 .0738 .00895

*® .812 .499 .242 .0738 .00890

BBNDIN6
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O)_ 1 .811 .457 .148
3 .811 .457 .148

Klb 5 .811 .457 .148

_® .811 .457 .147

-.0052 -.0099
-.0055 -.0099
-.0056 -.0100
-.0060 -.0100

Internal crack

KI(O) 1 .796 .427 .127
3 .797 .429 .128

KIB 5 .707 .429 .128

*_ .798 .431 .129

-.0107 -.0102
-.0107 -.0102
-.0107 -.0102
-.0106 -.0103

230



Table 6.13 Mode ] normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroida] shell. The crack is located at

position C of Fig. 6.5, a/h=l, R/h=lO, _=-.3.

MBMB_ LOM)ING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .o5

K1 (0) 1 .813 .502 .244
3 .815 .505 .245

Klm 5 .816 .506 .246

*® .817 .509 .248

.0744 .00888

.0739 .00850

.0739 .00855

.0743 .00854

Internal crack

K1 (0) 1 .817 .509 .249
3 .812 .499 .241

Klm 5 .811 .497 .240

+® .810 .494 .238

.0753 .00880

.0730 .00865

.0726 .00864

.0723 .00867

BRNDING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O ) 1 .709 .434 .132
3 .802 .439 .134

Klb 5 .803 .440 .135

+® .804 .443 .137

-.0094 -.0101
-.0096 -.0102
-.0094 -.0102
-.0089 -.0102

Internal crack

K1 (0) 1 .804 .442 .138
3 .798 .431 .120

Klb 5 .797 .429 .127

+® .795 .425 .124

-.0080 -.0100
-.0109 -.0103

-.0115 -.0103
-.0120 -.0103
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Table 6.14 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=l, R/h=lO, v=.3.

Lo/h

Ri/R

nBRANB LOADING
External crack

.2 .4 .6 .8 .95

K1 (0) 1 .817 .509 .249
3 .822 .517 .254

Klm 5 .823 •519 .255

*® .824 .520 .256

.0753 .00880
•0762 .00871
.0764 .00870
.0768 .00871

Internal crack

(0) 1 .813 .502 .244
K1 3 .813 .501 .243

Klm 5 •813 .501 .242

*® .812 •499 .242

.0744 •00888

.0739 •00886

.0739 •00887

.0738 •00890

Lo/h

Ri/R

BBNDING
External crack

.2 .4 .6 .8 .95

KI(O)__ 1 .804 .442 .138
3 .810 •453 .145

Klb 5 .811 .455 •146

*® •811 •457 •147

-.0080 -.0100
-.OO67 -.0101
-.0064 -.0101
-.0060 -.0100

Internal crack

K1(0)

Klb

1
3
5

..b®

•799
•799
.799
•798

•434
.433
•433
.431

•132
.131
• 130
• 129

-.0094 -.0101
-.0103 -.0103
-.0104 -.0103
-.0106 -.0103
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Table 6.15 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=2, R/h=lO, v=-.3.

Lo/h

• Ri/R

NBHBLANBLOADING
External crack

.2 .4 .6 .8 .95

KI(O).. 1 .883 .633 .351 .115 .0138
3 .882 .630 .348 .113 .0135

Klm 5 .881 .629 .346 .112 .0133
*= .880 .625 .341 .109 .0130

Internal crack

() 1 .864 .591 .313 .1024 .0136
KI-O- 3 .865 .592 .312 .1017 .0133

Klm 5 .865 .592 .313 .1014 .0132

.m .867 .594 .313 .1008 .0129

BBNI}ING
External crack

T. /h o .4 .6
_0/_ °_

Ri/R

.8 .95

K1 (0) 1 .874 .586 .258
3 .873 .582 .253

Klb 5 .873 .581 .251

*® .871 .576 .245

.0318 -.00803

.0293 -.00838

.0282 -.00853

.0251 -.00893

Internal crack

K1(0) 1 .854 .535 .20g
3 .855 .537 .209

K1b 5 .855 .537 .209

"_® .857 .539 .210

.0151 -.00920

.0144 -.00939

.0141 -.00948

.0136 -.009fl8
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Table 6.16 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=2, R/h=lO, v=.3.

MBMBRANB LOADING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

() 1 .890 .650 .368 .122 .0145
KI-O- 3 .891 .652 .369 .122 .0143

_lm 5 .891 .652 .369 121 .0142
*® .892 .653 .369 .121 .0141

Internal crack

KI(O ) 1 .870 .604 .324 .107 .0142
3 .872 .607 .326 .107 .0141

Klm 5 .873 .609 .327 .107 .0140
*® .875 .613 .330 .108 .0139

BBNDINC
Bxternal crack

Lo/h .2 .4 .6

Ri/R

.8 .95

(o) 1 .882 .606 .279
Zl 3 .883 .608 .279

Klb 5 .884 .608 .279
*® .884 .610 .279

.0400 -.00745

.0394 -.00767

.0391 -.00777

.0384 -.00803

Internal crack

K1 (0) 1 .861 .551 .224
3 .863 .555 .227

Klb 5 .864 .557 .228

_® .866 .562 .232

.0202 -.00884

.0206 -.00896

.0208 -.00901

.0214 -.00914
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Table 6.17 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=2, R/h=lO, v=.3.

MEMBRANELOADING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O ) 1 .875 .614 .333 .ii0 .0140
3 .877 .618 .335 .108 .0131

Klm 5 .878 .620 .336 .108 .0130

*® .880 .625 .341 .lOg .0130

Internal crack

KI(O ) 1 .870 .623 .342 .I122 .0140
3 .871 .605 .322 .i037 .0130

Klm 5 .869 .600 .318 .1022 .0129

*® .867 .594 .313 .1008 .0129

BBNDING

External crack

Lo/h . 2 .4 .6

Ri/R

.8 .95

KI(O)_ 1 .866 .563 .235
3 .868 .568 .237

Klb 5 .869 .570 .239

• m .871 .576 .245

.0243 -.00849

.0228 -.00905

.0231 -.00909

.0251 -.00803

Internal crack

K1 (0) 1 .870 .574 .245
3 .862 .552 .222

Klb 5 .860 .547 .217

*® .857 .539 .210

.0275 -.00829

.0174 -.00941

.0155 -.00058

.0136 -.00968
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Table 6.18 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=2, R/h=lO, //=-.3.

Lo/h

Ri/a

Ifl_I[BRANELOADINC
External crack

.2 .4 .6 .8 .95

KI(O ) 1 .879 .623 •342 .112 •0140
3 •889 .645 .361 •118 .0139

Klm 5 .890 •650 .365 .119 •0139

_® .892 .653 .369 .121 .0141

Internal crack

KI(O ) 1 .875 .614 •333 .110
3 .876 .616 •333 .108

Klm 5 .876 .615 .332 .108

*® •875 .613 .330 •108

•0140
.0138
•0138
.0139

Lo/h

Ri/R

BENDING
External crack

•2 .4 .6 .8 .95

KI(O)

Klb

1 .870 .574 .245 .0275
3 •881 .601 .270 .0346
5 .883 .605 .274 .0363

*® •884 •610 .279 •0384

-•00829
-.00827
-.00822
-.00803

Internal crack

KI(O)

Klb

i

3

5
_ao

•866
•867
.867
.866

•563
•565
•565
•562

•235
•235
•234
.232

.0243

.0224

.0220

.0214

-.00849
-.00906
-.00913
-.00914

236



Table 6.19 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=4, R/h=lO, _=.3.

Lo/h

Ri/R

MBMBBAb'BLOADING
External crack

.2 •4 .6 .8 .95

KI(O)__ 1 •921 .732 .463 .174 •0232
4 .920 •727 •455 •168 •0219

Klm 7 •920 •725 .452 .165 .0214

*m •919 .720 •443 •159 .0203

Internal crack

KI(O)__ 1 .900 _ •672 •392 •141 •0208
4 .901 .672 .390 .138 .0199

Klm 7 •901 .672 .389 .137 •0196

_® •902 .674 .389 .135 •0189

Lo/h

Ri/R

BBNDING
External crack

" .4 6

KI(O)__ 1 .916 .696 .385
4 .915 .692 .376

Klb 7 .914 .689 .372

• m .913 .684 •362

KI(O)

Klb

.8 .95

.0943 -•00107

.0870 -•00245

.0841 -.00297
•0770 -.00416

Internal crack

1
4
7

'+W

.893
•893
•894
•895

• 627
• 627
•627
•628

.300
• 297
• 296
• 296

.0538 -.00509

.0507 -.00587

.0496 -.00615

.0477 -.00673
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Table 6.20 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=4, R/h=lO, _=.3.

Lo/h

Ri/R

MEMBRANE LOADING
External crack

.2 .4 .6 .8 .95

K1 (0) I .933 .763 .503 .197 .0260
4 .935 .769 .509 .198 0255

Klm 7 .936 .771 .511 .198 .0253
-*® .938 .775 .515 .199 .0249

Internal crack

KI(O)__ 1 .913 .703 .425 .156 .0227
4 .917 .713 .434 .159 .0224

Klm 7 .918 .716 .437 .159 .0223

• ® .921 .723 .444 .162 .0222

BENDING

External crack

Lo/h _.2 .4 .6

Ri/R

.8 .95

() 1 .928 .734 .435 .120 .00142
KI-O- 4 .931 .742 .443 .122 .00088

Klb 7 .932 .744 .445 .123 .00068

_® .934 .749 .451 .124 .00021

Internal crack
T

KI(O)__ 1 .907 .665 .341
4 .911 .676 .352

Klb 7 .913 .680 .356

*® .916 .689 .365

.0713 -.00363
.0744 -.00387
.0756 -.00395
.0783 -.00410
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Table 6.21 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=4, R/h=lO, u=.3.

IBIB_L_B LOADIN¢
External crack

Lo/h- . 2 .4 . 6

Ri/R

• 8 .g5.

K1 (0) 1 .g15 .712 .437 .162 .0228
4 .g17 .714 .435 .155 .0202

Klm 7 .g17 .715 .437 .156 .0200
*= .glg .720 .443 .159 .0203

Internal crack

KI(O ) 1 .g16 .715 .439 .162 .0225
4 .907 .686 .402 .141 .0193

Klm 7 .905 .680 .395 .138 .OlgO

.m .902 .674 .389 .135 .O18g

BBNDINQ
External crack

Lo/h- .2 .4

Ri/R

K1 (0) 1 . gog .674 .355
4 .910 .676 .352

Klb 7 .gll •678 .354
*= .g13 .684 .362

Internal crack

.6 .8 .95

.078g -.00259

.0724 -.00453

.0728 -.00462

.0770 -.00416

K1 (0) 1 .glO .676 .356
4 .900 .643 .312

K1 b 7 .897 .636 .304

*® .895 .628 .296

.0784 -.00283

.0542 -.00615

.0507 -.00655

.0477 -.00673
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Table 6.22 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell• The crack is located at

position D of Fig. 6.5, a/h=4, R/h=lO, v=-.3.

Lo/h

Ri/R

NRMBRANB LOADING

External crack

.2 .4 .6 .8 •95

El(O)__ 1 .916 •715 •439 .162 •0225
4 .935 •766 •500 •190 •0239

Klm 7 .937 .772 .509 .195 .0243

*® •938 .775 .515 .199 .0249

Internal crack

KI(O)__ 1 .915 .712 •437 .162 .0228
4 .922 .726 .448 •163 .0221

Elm 7 .923 •726 .448 .163 .0221

*® .921 •723 •444 .162 .0222

Lo/h

Ri/R

BBNDING
External crack

•2 .4

KI(O ) 1 .910 .676 .356
4 .931 .738 .432

Klb 7 .933 •745 .443

_® .934 •749 •451

K1 (0)

Klb

• 6 .8 •95

•078 -.00283

.I12 -.00103

•118 -•00051

•124 •00021

Internal crack

1
4
7

.909
•917
•917
.916

• 674
• 692
•692
•689

• 355
• 370
.369
• 365

.0789 -.00259
.0803 -.00394
.0800 -.00407
.0783 -.00410
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Table 6.23 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=.5, u=.3.

IN-PLANB SHI]AI

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .95

5 .736

K3(0) 10 .737
20 .737

K3I 50 .738

_® .738

.545 .466 .351 .186

.546 .466 .350 .185

.546 .466 .350 .185

.547 .466 .350 .184

.547 .467 .350 .184

inner axial crack

5

K3(O ) 10
20

K3I 50
_W

.740 .550 .470 .352 .185

.739 .549 .468 .351 .184
.739 .548 .467 .350 .184
.738 .547 .467 .350 .184
.738 .547 .467 .350 .184

K3(O)

K3I

Ks(O)

K3I

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .736 .545 .466 .351 .186
10 .737 .546 .466 .350 .185
20 .737 .546 .466 .350 .185
50 .738 .547 .466 .350 .184
*® .738 .547 .467 .350 .184

Inner circumferential crack

5 .740 .550 .470 .352 .185
10 .739 .549 .468 .351 .185
20 .739 .548 .468 .350 .184
50 .738 .548 .467 .350 .184
*® .738 .547 .467 .350 .184

241 '



Table 6.24 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to out-of-
plane shear, a/h=.5, _=.3.

OUT-OF-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .988 .883 .684 .466 .277

K,(O) 10 .988 .883 .685 .467 .277
20 .988 .883 .685 .467 .277

K20 50 .988 .883 .685 .467 .277

*® .988 .883 .685 .467 .277

Inner axial crack

5 .988 .883 .685 .467 .277

K2(O)__ 10 .988 .883 .685 .467 .277
20 .988 .883 .685 .467 .277

K20 50 .988 .883 .685 .467 .277

_® .988 .883 .685 .467 .277

K2(O)

K20

K2(O)

K20

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .988 .882 .682 .463 .274
10 .988 .883 .684 .466 .276
20 .988 .883 .685 .467 .277
50 .988 .883 .685 .467 .277
_® .988 .883 .685 .467 .277

Inner circumferential crack

5 .988 .882 .683 .464 .275
10 .988 .883 .684 .466 .277
20 .988 .883 .685 .467 .277
50 .988 .883 .685 .467 .277
_® .988 .883 .685 .467 .277
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Table 6.25 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=.5, u=-.3.

TWISTING

Outer axial crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .710 .408 .102 -.637

K3(O ) 10 .711 .409 .102 -.637
-- 20 .711 .410 .103 -.637
K3T 50 .712 .410 .103 -.637

• ® .712 .411 .103 -.636

Inner axial crack

-6.01
-6.01
-6.01
-6.01
-6.01

5 .714 .415 .110

K3(O ) 10 .713 .413 .107
20 .713 .412 .105

K3T 50 .712 .411 .104

_® .712 .411 .103

-.624 -5.94

-.630 -5.97
-.633 -5.99
-.635 -6.00
-.636 -6.01

Outer circumferential crack

Lo/h .2 .4 .6

R/h-

5 .710 .408 .101 -.637

K3(O ) I0 .711 .409 .I02 -.638
20 .711 .410 .102 -.637

K3T 50 .712 .410 .103 -.637

*® .712 .411 .103 -.636

Inner circumferential crack

5 .714 .415 .III

K3(O)__ 10 .713 .413 .107
20 .713 .412 .106

K3T 50 .712 .411 .104

*® .712 .411 .103

.8 .95

-6.01
-6.01

-6.01
-6.01
-6.01

-.622 -5.93
-.629 -5.97
-.632 -5.98
-.634 -6.00
-.636 -6.01
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Table 6.26 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to in-plane

shear, a/h=l•, y=.3.

IN-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 •797 .632 .576 •492 •304

K3(O)__ 10 .798 •633 •576 .490 .301
20 .799 .634 .576 .489 .300

K3I 50 •799 .635 .576 •489 .299

4® .800 .635 .577 .489 .299

Inner axial crack

5 •803 •641 •585 •496 .303

K3(O)__ 10 .802 .639 .581 .493 .301
20 .801 •637 •579 •491 .300

K3I 50 .800 .636 .578 .490 .299

*® .800 .635 .577 .489 •299

K3(O)

K31

K3(O)

K3I

t

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .797 .631 •575 .492 .305

10 .798 .633 .575 .490 .302
20 .799 .634 .576 .489 .300
50 .799 .634 .576 .489 .299
_® .800 .635 •577 .489 .299

Inner circumferential crack

•498
•494
.491
•490

•489

5 .803 .642 •586
10 .802 .639 .582
20 •801 .638 .580
50 .800 .636 .578
_® .800 .635 .577

•304
•301
.300
.299
.299
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Table 6.27 Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to out-of-

plane shear, a/h=l , _=.3.

OUT-OF-PLANB SlllL_t

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .95

5 .996 .953 .850 .691 .485

K2(O ) 10 .996 .953 .851 .692 .486
20 .996 .953 .851 .693 .487

K20 50 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

inner axial crack

5 .996 .953 .851 .693 .486

K2(O ) 10 .996 .953 .851 .693 .487
20 .996 .953 .851 .693 .487

K20 50 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

K2(O)

K20

K2(O)

K2 o

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .995 .951 .844 .679 .472
10 .996 .953 .849 .688 .482
20 .996 .953 .850 .691 .485
50 .996 .953 .851 .693 .487
*® .996 .953 .851 .693 .487

Inner circumferential crack

5 .995 .952 .846 .685 .477
10 .996 .953 .850 .691 .485
20 .996 .953 .851 .693 .487
50 .996 .953 .851 .693 .487
*® .996 .953 .851 .693 .487
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Tab]e 6.28 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=l., v=.3.

TWISTING

Outer axial crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .776 .519 .273 -.334

K3(0) 10 .777 .520 .274 -.337
20 .778 .521 .275 -.337

K3T 50 .779 .522 .276 -.336

*® .779 .523 .277 -.335

Inner axial crack

-5.25
-5.27
-5.27
-5.27
-5.27

5 .783 .531 .292 -.298

K3(O)_ 10 .781 .528 .286 -.314
20 .780 .526 .282 -.324

K3T 50 .780 .525 .279 -.330

*® .779 .523 .277 -.335

-5.05
-5.15
-5.20
-5.24
-5.27

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8

5 .776 .517 .271 -.336

K3(O ) I0 .777 .519 .273 -.339
20 .778 .521 .274 -.338

K3T 50 .779 .522 .275 -.337

*® .779 .523 .277 -.335

inner circumferential crack

5 .783 .533 .296 -.289

K3(O ) 10 .782 .529 .287 -.310
20 .781 .526 .283 -.322

K3T 50 .780 .525 .280 -.329
_® .779 .523 .277 -.335

.95

-5.27
-5.28
-5.28
-5.28
-5.27

-4.99
-5.12
-5.19
-5.23
-5.27
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Table 6.29 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to in-plane
shear, a/h=2., _=-.3.

IN-PLANE SRRA_

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .826 .684 .659 .631 .457

K3(O ) I0 .827 .684 .658 .626 .449
20 .828 .685 .658 .624 .445

K3I 50 .829 .686 .658 .623 .443

*® .829 .687 .659 .623 .442

Inner axial crack

5 .833 .696 .673 .641 .458

K3(O ) 10 .832 .693 .668 .633 .451
20 .831 .691 .664 .629 .447

K3I 50 .830 .689 .662 .625 .444

*® .829 .687 .659 .623 .442

Ks(O)

K31

Ks(O)

K31

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .825 .682 .657 .632 .463
10 .827 .683 .657 .626 .451
20 .828 .685 .657 .623 .446
50 .828 .686 .658 .623 .443
*® .829 .687 .659 .623 .442

Inner circumferential crack

5 .834 .699 .677 .647 .463
10 .832 .694 .670 .636 .452
20 .831 .692 .665 .630 .447
50 .830 .689 .662 .626 .444
*® .829 .687 .659 .623 .442
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Tab]e 6.30 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrica] shell subjected to out-of-
plane shear, a/h=2., v=.3.

OUT-OF-PLANE SHEAR

Lo/h

U/h

Outer axial crack
.2 .4 .6 .8 .95

5 .999 .986 .048 .871 .716

K2(O)__ I0 .999 .986 .950 .874 .720
20 .999 .986 .950 .875 .722

K20 50 .999 .986 .950 .875 .723

_® .999 .986 .950 .876 .723

Inner axial crack

5 .999 .986 .950 .876 .722

K2(O)__ 10 .999 .986 .950 .876 .723
20 .999 .986 .950 .876 .723

K20 50 .999 .986 .950 .876 .723

*® .999 .986 .950 .876 .723

K2(O)

K20

K2(O)

K28

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .998 .982 .936 .845 .678
I0 .999 .985 .946 .865 .707
20 .999 .986 .949 .872 .717
50 .999 .986 .950 .875 .721
_® .999 .986 .950 .876 .723

Inner circumferential crack

5 .998 .983 .942 .857 .695
10 .999 .985 .948 .872 .716
20 .999 .986 .950 .876 .722
50 .999 .986 .950 .876 .723
_® .999 .986 .950 .876 .723
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Table 6.31 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to

twisting, a/h=2., _=-.3.

TWISTING

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .807 .581 .398 -.007 -3.63

K3(O ) 10 .808 .583 .397 -.018 -3.72
20 .809 .584 .398 -.022 -3.75

K3T 50 .810 .585 .399 -.022 -3.76

+® .811 .587 .401 -.020 -3.75

Inner axial crack

5 .815 .598 .427 .057 -3.21

K3(O ) 10 .813 .594 .417 .027 -3.43
20 .812 .591 .411 .008 -3.56

K3T 50 .812 .589 .406 -.007 -3.66

+® .811 .587 .401 -.020 -3.75

K3(O)

K3 T

K3(O)

K3 T

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .806 .579 .395 -.009 -3.63
10 .807 .581 .395 -.022 -3.74
20 .809 .583 .396 -.025 -3.77
50 .810 .585 .398 -.024 -3.78
÷w .811 .587 .401 -.020 -3.75

Inner circumferential crack

5 .816 .602 .436 .084 -3.00
10 .814 .596 .422 .039 -3.34
20 .813 .592 .413 .013 -3.52
50 .812 .590 .407 -.005 -3.65
*® .811 .587 .401 -.020 -3.75
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Table 6.32 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to in-plane

shear, a/h=4., u=.3.

IN-PLANB SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .837 .709 .712 .745 .625

K3(O)__ 10 .838 .709 .709 .737 .610
20 .838 .709 .708 .732 .601

K3I 50 .839 .710 .708 .729 .594

4® .840 .712 .709 .728 .590

Inner axial crack

5 .843 .720 .726 .757 .627

K3(O)__ 10 .843 .718 .721 .747 .613
20 .842 .716 .717 .740 .604

K3I 50 .841 .714 .713 .734 .597

*® .840 .712 .709 .728 .590

K3(O)

K31

K3(O)

K3I

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .836 .707 .711 .750 .643
10 .837 .707 .708 .737 .616
20 .838 .708 .707 .731 .602
50 .839 .710 .707 .728 .594
*® .840 .712 .709 .728 .590

Inner circumferential crack

5 .845 .725 .733 .771 .645
10 .844 .721 .725 .754 .620
20 .843 .718 .719 .743 .606
50 .841 .715 .714 .735 .597
_® .840 .712 .709 .728 .590
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Table 6.33 Mode '2 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=4., _-.3.

OUT-OF-PLANB SImAR

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .95

5 1.00 .996 .986 .959 .879

K2(O)__ i0 1.00 .996 .987 .962 .884
20 1.00 .997 .987 .963 .886

K20 50 1.00 .997 .988 ,964 .888
*® 1.00 .997 .988 .965 .889

Inner axial crack

5 1.00 .996 .987 .963 .886

K2(O)__ I0 1.00 .997 .988 .965 .888
20 1.00 .997 .988 .965 .889

K20 50 1.00 .997 .988 .965 .889

.w 1.00 .997 .988 .965 .889

K2(O)

K20

K2(O)

K20

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .999 .992 .968 .916 .805
10 1.00 .995 .981 .947 .858
20 1.00 .996 .985 .958 .877
50 1.00 .997 .987 .963 .885
*® 1.00 .997 .988 .965 .889

Inner circumferential crack

5 .999 .993 .973 .929 .828
10 1.00 .995 .984 .955 .872
20 1.00 .996 -.987 .963 .885
50 1.00 .997 .988 .965 .889
*® 1.00 .997 .988 .965 .889
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Table 6.34 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack, in a cylindrical shell subjected to

twisting, a/h=4., U=.3.

TrlSTING

Outer axial crack

Lo/h .2 .4 .6

R/h

.8 .95

.

K3(O ) 10
2O

K3T 50

.819 .611 .473

.819 .611 .469

.820 .611 .467

.821 .612 .467
_® .822 .615 .470

Inner axial crack

.251 -1.80

.229 -2.00

.216 -2.12

.210 -2.19

.211 -2.21

5 .825 .626 .499 .314 -1.33

K3(O)__ 10 .825 .623 .491 .284 -1.60
20 .824 .621 .484 .259 -1.81

K3T 50 .823 .618 .478 .236 -2.00

*® .822 .615 .470 .211 -2.21

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .817 .609 .472 .261

K3(O)__ 10 .818 .609 .466 .227
20 .819 .610 .465 .212

K3T 50 .820 .612 .466 .207

• ® .822 .615 .470 .211

Inner circumferential crack

-1.64
-1.98
-2.14
-2.21
-2.21

5 .827 .631 .513 .367 -.854

K3(O)__ I0 .826 .627 .499 .311 -1.36
20 .825 .622 .489 .272 -1.70

K3T 50 .823 .619 .479 .241 -1.96

*® .822 .615 .470 .211 -2.21
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Table 6.35 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane
shear. Crack is at position A of Fig. 6.5, R/h=lO,
/r=-.3.

IN-PLANg SHR_R

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O)__ 1 .798 .632 .575 .490 .303
3 .798 .632 .575 .490 .302

K3I 5 .798 .632 .575 .490 .302

*® .798 .633 .575 .490 .302

a/h=l, Internal

K3(O) 1 .802 .640 .583 .495 .302
3 .802 .640 .583 .494 .302

K3I 5 .802 .640 .583 .494 .302

÷® .802 .639 .582 .494 .301

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

() 1 .826 .683 .657 .627 .454
K3-O- 4 .826 .683 .656 .626 .453

K3I 7 .826 .683 .656 .626 .452

*= .827 .683 .657 .626 .451

a/h=2, Internal

0() 1 .833 .696 .672 .639 .455
K3-_- 4 .833 .695 .671 .638 .454

K3I 7 .833 .695 .670 .637 .453
-*® .832 .694 .670 .636 .452
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Table 6.36 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position A of Fig. 6.5,
R/h=lO, _=-.3.

OUT-OF-PLANE SHEAR

a/h=l, External

Lo/h .2 .4 .6

Ri/h

.8 .95

() 1 .996 .953 .848 .688 .482
K2"O" 3 .996 .953 .848 .688 .482

K20 5 .996 .953 .849 .688 .482
*= .996 .953 .849 .688 .482

a/h=l, Internal

() 1 .996 .953 .850 .691 .485
K2"O" 3 .996 .953 .850 .691 .485

K20 5 .996 .953 .850 .691 .485

*® .996 .953 .850 .691 .485

a/h=2, External

Lo/h .2 .4 .6

Ri/h

.8 .95

1 .999 .985 .945 .864 .706
•K2(O) 4 .999 .985 .945 .865 .706

K20 7 .999 .985 .945 .865 .707

4= .999 .985 .946 .865 .707

a/h=2, Internal

1 .999 .985 .948 .872 .716
K2(O) 4 .999 .985 .948 .872 .716

K20 7 .999 .985 .948 .872 .716

_® .999 .985 .948 .872 .716
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Table 6.37 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to twisting.
Crack is at position A of Fig. 6.5, R/h=lO, u=-.3.

TWISTING

a/h=l, External

Lo/h .2 .4 .6

Ri/h

.8 .95

K3(O)_ 1 .777 .519
3 .777 519

K3T 5 .777 .519

+® .777 .519

.272 -.339 -5.28

.272 -.339 -5.28

.272 -.339 -5.28
.273 -.339 -5.28

s/h=l, Internal

K3(O)__ 1 .782 .530 .290 -.304
-- 3 .782 .530 .289 -.306
K3T 5 .782 .529 .289 -. 308

+m .782 .529 .287 -. 310

-5.08

-5. I0

-5. I0

-5.12

a/h=2, External

Lo/h.2 .4

Ri/h

.6 .8

K3(O)__ 1 .807 .580 .395 -.019
4 .807 .581 .395 -.021

K3T 7 .807 .581 .395 -.021

+® .807 .581 .395 -.022

s/h=2, Internal

.g5

-3.71
-3.73
-3.73
-3.74

IC,(O) 1 .815 .598 .426 .052 -3.24
__o-- 4 .814 .597 .424 .046 -3.29
K3T 7 .814 .597 .423 .044 -3.30

*® .814 .596 .422 .039 -3.34
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Table 6.38 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position B of Fig. 6.5, R/h=lO,
v=.3.

IN-PLANE SWRAR

a/h=l, External

Lo/h .2 .4 .6 .8 .95

Ri/b

() 1 .798 .632 .575 .490 ..302
K3-O- 3 .798 .633 .575 .490 .302
K3I 5 .798 .633 .575 .490 .302

*® .798 .633 .576 .490 .301

a/h=l, Internal

() 1 .802 .640 .583 .494 .302
K3-O- 3 .802 .639 .582 .494 .301

K3I 5 .802 .639 .582 .494 .301

*® .802 .639 .581 .493 .301

a/h=2, External

Lo/h .2 .4 .6

Ri/h

.8 .95

K,,() 1 .826 .683 .657 .627 .453
°-0- 4 .827 .684 .657 .626 .451
K3I 7 .827 .684 .657 .626 .450

*® .827 .684 .658 .626 .449

a/h=2, Internal

() 1 .833 .695 .671 .637 .454
K3-O- 4 .832 .694 .669 .635 .452

K3I 7 .832 .694 .669 .635 .452

" *® .832 .693 .668 .633 .451

,°
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Table 6.39 Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position B of Fig. 6.5,

R/h=lO, v=-.3.

OUT-OF-PLANE SgR.qli

a/h=l, External

Lo/h .2 .4 .6

Ri/h

.8 .95

Ko(O) 1 .996 .953 .850 .691

n2v0 3 996 •953 .850 - •6925 .996 .953 .850 •692
_® .996 •953 .851 .692

•485
.486
•486
.486

a/h=1, internal

I_(O) 1 .996 .953 .851 .693 .487
'_--_v 3 .996 .953 .851 .693 .487
n20 5 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

a/h=2, External

Lo/h .2 .4 .6

Ri/h

.8 .95

K2(O)__ 1 .999 .986 .948 .871 .716
4 .g99 .986 .949 .873 .719

K20 7 .999 .986 .949 .873 .719

*® .g99 .986 .950 .874 .720

a/h=2, Internal

K,_(O) 1 .999 .986 .950 .876 .722
'=--v_ 4 .999 .986 .950 .876 .723
a20 7 .g99 .986 .951 .876 .723

*® .999 .986 .950 .876 .723
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Table 6.40 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.

Crack is at position B of Fig. 6.5, R/h=lO, v=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O)_ 1 .777 .519 .273 -.337 -5.27
3 .777 .520 .273 -.337 -5.27

K3T 5 .777 .520 .273 -.337 -5.27

+® .777 .520 .274 -.337 -5.27

a/h=l, Internal

K3 (0) 1 .782 .529 .289 -. 307 -5.10
3 .782 .529 .288 -.310 -5.12

K3T 5 .782 .529 .287 -.311 -5.13

4® .781 .528 .286 -.314 -5.15

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O)__ 1 .807 .581 .396 -.017 -3.70
4 .808 .582 .397 -.018 -3.71

K3T 7 .808 .582 .397 018 -3.71

*® .808 .583 .397 -.018 -3.72

a/h=2, Internal

K3(O)__ 1 .814 .597 .423 .044 -3.31
4 .814 .596 .420 .036 -3.37

K3T 7 .814 .595 .419 .033 -3.39

*® .813 .594 .417 .027 -3.43
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Table 6.41 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position C of Fig. 6.5, R/h=lO,
_=.3.

IN-PLANE SHEAR

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3 (0) 1 .800 .635 .578 .491 .301
3 .799 .633 .576 .490 .301

K3I 5 .798 .633 .575 .490 .301

*® .798 .633 .575 .490 .302

a/h=1, Internal

K3(O)__ 1 .800 .636 .579 .492 .301
3 .801 .638 .581 .492 .301

K3I 5 .802 .639 .581 .493 .301

_® .802 .639 .582 .494 .301

Lo/h

Si/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O)__ 1 .829 .687 .661 .628 .450
4 .827 .684 .657 .625 .449

K3I 7 .827 .684 .657 .625 .450

_® .827 .683 .657 .626 .451

a/h=2, Internal

K3(O)__ 1 .830 .690 .664 .630 .449
4 .832 .693 .668 .633 .450

K3I 7 .832 .694 .669 .634 .451

_® .832 .694 .670 .636 .452
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Table 6.42 _ode 2 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position C of Fig. 6.5,

R/h=lO, _=-.3.

OUT-OF-PLANE SHEAR

a/h=l, External

Lo/h.2 .4

Ri/h

.6 .8 ..95

K2(O)__ 1 .996 .953 .849 .689 .483
3 .996 .953 .849 .689 .483

K20 5 .996 .953 .849 .689 .482

_® .996 .953 .849 .688 .482

a/h=l, Internal

() 1 .996 .953 .850 .691 .485
K2-O- 3 .996 .953 .850 .691 .485

K20 5 .996 .953 .850 .691 .485

*® .996 .953 .850 .691 .485

a/h=2, External

Lo/h .2 .4

Ri/h

.6 .8 .95

K2(O)__ 1 .999 .985 .946 .867 .710
4 .999 .985 .946 .866 .708

K20 7 .999 .985 .946 .865 .708

*® .999 .985 .946 .865 .707

a/h=2, Internal

() 1 .999 .985 .948 .871 .716
K2-O- 4 .999 .985 .948 .872 .716

K20 7 .999 .985 .948 .872 .716

*® .999 .985 .948 .872 .716
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Table 6.43 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to twisting.

Crack is at position C of Fig. 6.5, R/h=lO, u=.3.

TWISTING

Lo/h

Ri/h

a/h=1, External
.2 .4 .6 .8 .95

IC_(O) 1 .779 .523 .278 -.330 -5.23
3 .778 .521 .274 -.337 -5.28

K3T 5 .777 .520 .273 -.337 -5.27

*® .777 .519 .273 -.339 -5.28

a/h=1, Internal

K3(O ) 1 .780 .525 .281 -.323 -5.19
3 .781 .527 .285 -.316 -5.16

K3T 5 .781 .528 .286 -.314 -5.14
_® .782 .529 .287 -.310 -5.12

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .05

K3(O)_ 1 .810 .586 .403 -.006 -3.64
4 .808 .582 .396 -.022 -3.75

K3T 7 .808 .582 .395 -.023 -3.75

• ® .807 .581 .395 -.022 -3.74

a/h=2, Internal

K3(O) 1 .811 .5gO .410 .011 -3.53
4 .813 .594 .418 .028 -3.41

K3T 7 .814 .595 .419 .033 -3.38
*® .814 .596 .422 .039 -3.34
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Table 6.44 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position D of Fig. 6.5, R/h=lO,
_t=-.3.

IN-PLANE SHEAR

a/h=l, External

Lo/h .2 .4

Ri/h

.6 .8 .95

K3(O)__ 1 .800 .636 .579 .492 .301
3 .799 .634 .576 .490 .301

K3I 5 .799 .634 .576 .490 .301

*® .798 .633 .576 .490 .301

a/h=l, Internal

K3(O)__ 1 .800 .635 .578 .491 .301
3 .801 .637 .580 .492 .300

K3I 5 .801 .638 .580 .492 .301

*® .802 .639 .581 .493 .301

a/h=2, External

Lo/h .2 .4 .6

Ri/h

.8 .95

K3(O)__ 1 .830 .690 .664 .630 .449
4 .828 .686 .659 .626 .448

K3I 7 .828 .685 .658 .626 .448

_® .827 .684 .658 .626 .449

a/h=2, Internal

K3(O ) 1 .829 .687 .661 .628 .450
4 .831 .691 .665 .631 .449

K3I 7 .831 .692 .666 .632 .449

_® .832 .693 .668 .633 .451
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Table 6.45 Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position D of Fig. 6.5,

R/h=lO, v=.3.

OUT-OF-PLANB SHEAR

a/h=1, External

Lo/h .2 .4

Ri/h

.6 .8 .95

z2(o)

K20

1 .996 .953 .850
3 .996 - .953 .851
5 .996 .953 .851

_® .996 .953 .851

.691 .485

.692 .486

.692 .486

.692 .486

a/h=l, Internal

I_(O) 1 .996 .953 .849
3 .996 .953 .851

K20 5 .996 .953 .851
"_ .996 .953 .851

.689 .483

.692 .486

.693 .487

.693 .487

a/h=2, External

L0/h .2 .4

Ri/h

.6 .8 .95

() 1 .999 .985 .948 .871 .716
K2"O" 4 .999 .986 .950 .875 .721
K20 7 .999 .986 .950 .875 .721

_® .999 .986 .950 .874 .720

a/h=2, Internal

K2(O)__ 1 .999 .985 .946 .867 .710
4 .999 .986 .950 .875 .722

K20 7 .999 .986 .950 .876 .723

• = .999 .986 .950 .876 .723
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Table 6.46 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to twisting.

Crack is at position D of Fig. 6.5, R/h=lO, _=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .780 .525 .281 -.323 -5.19
3 .778 .522 .276 -.334 -5.26

K3T 5 .778 .521 .275 -.336 -5.26

_® .777 .520 .274 -.337 -5.27

a/h=l, Internal

() 1 .779 .523 278 -.330 -5.23
E3-O- 3 .780 .526 .282 -.322 -5.19

K3T 5 .781 .527 .284 -.319 -5.17

*® .781 .528 .286 -.314 -5.15

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O)__ 1 .811 .590 .410 .011 -3.53
4 .809 .584 .400 -.015 -3.70

K3T 7 .809 .583 .398 -.017 -3.71

• ® .808 .583 .397 -.018 -3.72

a/h=2, Internal

() 1 .810 .586 .403 -.006 -3.64
K3-O- 4 .813 .592 .413 .014 -3.52

K3T 7 .813 .592 .415 .019 -3.48

*® .813 .594 .417 .027 -3.43
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Figure 6.1 Comparison of the mode 1LSH with
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measured from y=O in the deformed position for a
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elliptical surface crack subjected to either

membrane loading (Om=_x/h) or bending (Ob=6_/h2),

y=-.3.
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CHAPTER 7

Conclusions and Future Work

The severity of the underlying assumptions of the line-spring

model are such that verification with three-dimensional solutions is

necessary. Such comparisons, in this study as well as in others, show

that the model is quite accurate, and therefore, its use in extensive

parameter studies is justified. It was shown in Chapter 4 that for

practical crack length to plate thickness ratios of about a/h=l, a

plate theory that includes transverse shear deformation gives better

results than the classical theory. The higher order plate theory does

not seem to be necessary for a/h greater than about 2. When using the

LSM with shallow shell theory it is more important to include

transverse shear effects, because this theory is asymptotically

correct for short cracks. The validity of the shallow shell theory

for long cracks is not fully known, however, for surface cracks of

practical dimensions it is expected to be accurate. Comparison of LSK

solutions obtained in this study with three-dimensional solutions for

semi-elliptical internal cracks in cylinders are also quite accurate.

It is still not understood why the model works as well as it does

close to the crack ends. This is a rather curious problem. Since the

stress intensity factors are defined by the model to be in a plane

perpendicular to the plate surfaces, and not perpendicular to the

crack front as they should be defined, the results at the ends of a

semi-elliptical crack should be poor, but they are not. Several

factors apparently act to cancel each other out. If these factors are

270



_q

understood, and separately accounted for, the extension of the model

to other crack problems will be better achieved.

This has special importance in the proposed skew-sy_etric or

mixed-mode line-spring model investigated in this study.

Unfortunately, there are no three-dlmensional solutions for

verification; only the success of the sy_etric case can give

confidencethat the results will be of some use. There are additional

assumptions involved that do not have to be made in the mode 1 case.

The first restricts the model to coplanar crack growth. The results

may be considered as upper bounds for materials which have a weak

cleavage plane. Of course, cracks along these planes would be of

concern. The next assumption relates to the previously discussed

problem in mode 1 which involves the crack front curvature and the

plane in which the SIF is defined. Although in the mode 1 case this

problem is somehow overcome, this effect is more critical in the skew-

syuetric case because there are two stress intensity factors as

opposed to one for the sy_etric case. To illustrate this problem,

consider that for a semi-elliptical crack in which a primary mode 3

loading in the center will become a primary mode 2 loading towards the

ends, and vice versa. This is not observed in the results. There is

no built in mechanism in the model that accounts for this, (but there

isn't for the mode 1 case either). Perhaps the combination of K2 and

K3 in the following generalized energy release rate equation is more

accurate than the individual K values.
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If the model can be verified, and improved, the shell with a crack at

an arbitrary angle with respect to a principal line of curvature would

be an important problem for future research.

Investigations into the endpoint behavior of the line-spring

model have led to important conclusions about the ability of the model

to predict stresses in front of the Wcrack tip m. This also has

applications to the crack interaction problem, and to possible uses of

the model to study crack propagation in the length direction, in

addition to the depth direction.

crack profile behaves like

= {O(1-t2) 1/4

near the endpoints, does the

It was found that only when the

(7.2)

numerical procedure easily converge.

However, for rectangular profiles, convergence is acceptable. For the

semi-ellipse, it is not.

An important application of the LSM was to solve the contact

plate bending problem. Here the flexibility of the model to allow for

any crack shape is exploited. Future work in this area includes

predicting crack shapes for mode 1 crack growth assuming a constant K

condition. Solution of this problem would involve the same iterative

procedure that was used for the contact case.

It should be emphasized that all solutions presented in this

study correspond to the perturbation problem, where constant loading

along the length of the crack has been assumed. To make use of the

results, the solution to the uncracked shell must first be obtained

along the plane of the crack. Then superposition principles apply.
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There may be cases where the solution to this problem varies

considerably along the crack length, and studies into this effect may

be necessary. This may be done in a straightforward manner.

The use of displacement quantities as unknowns in the formulation

of the problem leads to strongly singular integral equations, rather

than singular integral equations which result from using displ_cement

derivatives. Although it is more convenient to deal directly with the

displacement quantities, this formulation introduces log singularities

into the equations which require more asymptotic analysis in order to

have acceptable numerical convergence. In this study it was necessary

to evaluate these log integrals in closed form. Sometimes log terms

of the form (t-y)nln[t-y[ canbe extracted from the Fredholm kernel

and calculated inclosed form to slightly improve convergence, but in

general it is not worth the extra effort. The collocation method of

solving the integral equations was found to be better and more

convenient than the quadrature technique. It has been my experience

that orthogonal polynomials should be used as fitting functionswhen

using the LSM as opposed to simpler functions such as power series.

t

t a
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APPENDIX A

Non-Dimensional Variables and Useful Formulae

A.I Non-Dimensional Plate and Shell _uantities

x = Xl/h , y = x2/h , z = xz/h ,

u = ux = uI = UlD/h , #x = u2 = #I ' w = uz = u3 = U3D/h

Py = us = P2 'v = Uy = u4 = u2D/h ,

o i = #iD/E , q = q/E ,

N
XX

= Nll/(hE) , Nyy = N22/(hE) , Nxy = N12/(hE) ,

Mxx = MI1/(h2E) , Mxy = M12/(h2E) , Myy = M22/(h2B)

Vx = 12(I+P)V1/(ShE ) , Vy = 12(l+Y)Y2/(5hE) ,

X4 = 7-1 = 12(1-y 2) , _- 5(11__) ,

4 X4(h/R1)2 X4 = )_4(h/R_) 2 X42 = k4(h/R12 )2),! = , _ ' _ •

(A.1)

(A.2)

(A.S)

(A.S)

A°

If z

2 Some Useful Properties of Modified Bessel Functions

Kl(Z) = _ [K2(z) - Ko(z)] ' (A.6)

. ]d-zKo(z) = -Zl(Z) = -_ (z) - Ko(z) ,

d 2 -z [K2(z) _ Ko(z)] 2d-_ K2(z) = -Kl(Z) - _ K2(z) = --_ - _ X2(z)" (A.8)

= #lt-yl,

d dz d _ #sign(t_y)d (A.O)
dt - dt dz
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For small z,

KoCz ) ~ -ln(zl2) - 7e - (z/2)21n(z12) + OCz 2) ,

z2(z) ~ 21. 2 -i/2 -112(z/2) 21n (z/2) - 1/2 (-/2) 2(7e+S/4)

- 1/6(z/2)41n(z/2) + 0(= 4) ,

where Euler's constant, 7e = .57721566490153 ....

(A.lo)

(A.11)

A.3 Chebychev Polynomials

Of the first kind: Tn(X ) = cosne ,

sinfn+l)O
Of the second kind: Un(X ) - sin8

Some expressions needed to integrate

are,

8 = cos-lx , (A.12)

-1
, 8 = cos x (A.13)

_11(r-s)iU.(r) 1-_r2 Inir-sl dr i=I,2,3

r2Uj(r) = _1 /Uj+2(r) + 2Uj(r) +.Uj_2(r)] ,

An

second kinds when using the

derivatives as the unknowns is,

Tn (x) dx 1

J' (l_x 2) 1/2 - n (1-x2) 1/2Un-1 (x) + constant

(A.14)

r3Uj(r) : _1 [Uj+s(r) + 3Uj+l(r) + SUj -l(r) + U'-3(r)]3 " (A.15)

important relation between Chebychev Polynomials of the first and

line-spring model with displacement

(A.16)
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The following integrals are useful for calculating stresses ahead of

the crack tip,

+i Un(t) (l-t2) I/2

f-I x-t dt = -[x-(x2-1)1/2] n+l , 'x"> 1 , (A. 17)

+1 Tn(t )

f-1 (1-t2)1/2 (t-x)

dt = Ix- (x2-1) 1/21n
- , Ixl > I ,

(x2-1). 1/2
(A.18)

+1 Un(t) (1-t2)1/2

f'l (,-,f at= -(n+l) [x- (x2-1) 112] nil x 1/2]
(x

Ixl > 1 . (A.19)

A.4 Finite-Part t Cauchy Principal Value t and Log Integrals

Except for the log integrals, these expressions are copied from LOij.

(a,p)(t)+1 (1-t)aCl+t)#P n .

S-1 t-x
dt = IrcotCmr)(1-x)aCl+x)_PnCa'_) (x) -

2a+#F (u)F (n+_+l) 1-_

F(n+l,-n-a-#; l-u, _-_)- r(n+a+#+l)

(a > -1, # > -1, a # 0,I,2...) , (A.20)

S dt = -2qn(X ) ,
-1

(A.21)

_:11 Tn (t)
(1-t2) 1/2(t-x)

dt = XUn_1 (x) (A.22)

+1 Un(t) (1-t2) 1/2

_-1 t-x dt = -ITn+l(X ) (A.23)

+1 Pn(t) dt :-2(n+1) [ XQn(X ) _ Qn+l(X ) ]
_-i (t-x) 2 l-x 2

(A.24)
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_11 Tn(t)(l_t 2) 112(t-x) 2

n+l

dt-1" [_Un(X)-x2 + T Un-2(x) ]

(A.25)

dt = -#(n+l)Un(X) ,
(A.2S)

where P (a'P)(t) are Jacobi Polynomials, FCa,b;c;z) are Hypergeometric
n

functions, Pn(t) are Lagendre Polynomials, qn(t) are Lagendre

Polynomials of the second kind, and r(a) is the gamma function.

Some integrals that can be used with Eqn. B.27 are:

[
J it-x

(A.27)

_+i dt - (A.28)
1 -1 1

-I (t-x)2 l-x l+x '

f+l dt = 0 ,
1

-1 (1-t2) 1/2 (t-x)

(A.29)

£1 1
(1_t2) 1/2(t_x)2

(A.30)

f_11 (1-t2)1/2t-xdt =-xx , (A.31)

_11 (1-t2)1/2 dt =-_(t_x) 2
(A.32)

+1 (1_t) 1/2 dt =-2_[-2"[ '- 1 _-_ln(B) ] ,f-1 t-x
(A.33)

+1 (l_t)1/2 dt = -_[ 1 1
_-1. (t-x) 2 +

_ ln(S) ] , (A.34)
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+I 1
-1 (l-t)1/2(t-x)

dt = In(B)

+1 1

_-1 (l-t) 112 (t-x) 2

whe_"

B=

1_

There are similar formulas for power series.

1 f+ltJ-l(l_t2)l/21n[t_y [ dt = _ _k yk-1
"-I k=l

i _+ItJ-l(1-t2)I/2 dt = _ bk yk-I
J-1 t-y k=l '

I _+ltJ-I (1-t 2) 1/2 _ k-1- dt = ckY
"-1 (t-y) 2 k=l

where

1
--bk = 2_-_ l"

k = 1,2,...,j+1, for j = 1,2,3,...
and j-k odd,

bk = 0 , j-k even ,

ck = kbk+ 1 , k = 1,2,3,...,j

, k = 2,3,4,...,]+2

a 1 = 0 , j = 2,4,6,... ,

(A.35)

(A.36)

(x.s7)

(A.S8)

(A.so)

(A.40)

(A41)

(A.42)
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_ (j-2) !
_ 1_!_ In(2) )j+l

j = 3,5,7,..

a I = -(1/4 + 1/2 In(2)) , j:l (A.43)

And for the weight in the denominator,

S:i(1_t2)_7/2"(t_x)dt = _ dkxk ,k--O
(A.44)

dk = 0 , n-k even,

F
n-k odd (A.4B)

+I tn

1 _-1 (1-t2)1/2(t-x)2f

n-2
k

dt = _ ekx
, (A.46)

e k = 0 , n-k odd ,

r Fn-k-1]
=_7, t 2 J

ek F I_-_l (k+l) ,
n-k even (A.47)

For integration of logs with Chebychev Polynomials [76] (with

corrections) of the second kind that are typical when using the

strongly singular formulation,

+Iu.(r) 1-_r2 Inlr-s[ dr = V.(s) , -i < s < 1 ,
-I J J - -

(A.48)

where

vj(s)= -_ .
Tj+2(s)

j+2 ] ' j > 0

-_{ -s2 ]- 2 + 1/2 + ln2 , j = 0 (A.49)
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APPENDIX B

Finite-part Integrals

Singular integral equations result naturally from the formulation

of two-dimensional crack problems in mechanics when the crack opening

displacement derivative is used as the unknown. The theory is well

established due principally to the work of Muskhelishvili [78]. If

the displacement is used as the unknown, the resulting singular

integral equation takes on a new form and is referred to as strongly

singular. To illustrate the differences consider the two-dimensional,

half-space crack problem of Fig. B.1 with boundary conditions given by

Eqns. B.1-4' This simple geometry produces all of the important

mathematical features of the geometries studied in this dissertation.

x

o (0,y) -- o
xy

#xx(O,y)= 0

a.. is bounded at infinity.
ij

(B.1)

(B.2)

(B.3)

v(x,y) = v(y) = 0 , X -_a , x _ b

ay(X,O) =-p(x) , a<x<b. (B.4)

Figure B. 1

The resulting integral equation is

287



b b

_ dt + f _(t)K(x,t)dt =- _(l+g)p(x) a<x<b2_ ' '
a a

where the non-singular Fredholm kernel,

(s.s)

-1 6x 4x 2
Z(x,t)- ÷ (B.6)

t+x (t+x)2 (t+x)s '

and #(t) is the unknown derivative of the crack opening displacement

v(t), _ is the shear modulus of the material, and g is defined in

terms of Poisson's ratio y for both

plane stress:

and for plane strain: = 3-4// . (B.7)

The first integral in Eqn. B.5 is singular and is interpreted in

the Cauchy principal value sense, specified as such by a line through

the integral sign. One way

integral is as follows,

b

_ fl_ldt=
t-x

a

to define a

x-e b

lira { / _ dt + ; t_A_tdt }_0

a x+_

Cauchy principal value

(B.8)

By using the standard interpretation of an integral as the area under

a curve, note that individually the integrals on the right hand side

of Eqn. B.8 do not exist in the limit, but when added together the

ainfinite areas w will be of opposite signand will cancel giving a

finite result. When the problem in Fig. B.1 is formulated by using

the displacement v(t) as the unknown instead of the derivative _(t),

the resulting integral equation is found to be,
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b b

a (t-x)2 L 8t - 2_ pCx) ,
a

a(x(b , (B.9)

where the first integral no longer exists in the Cauchy principal

value sense and requires a special interpretation. Throughout the

dissertation these integrals are identified by a double dash through

the integral sign.

Consider a direct integration by parts of the integrals in Eqn.

B.a.

b b

a
a a

(B.IO)

b b

a a a tt-xJ2
(B.11)

Here again 'the same Wstrongly singular I integral appears. For

Eqn. B.11 to be an equality, this integral must be finite just as it

must be in Eqn. B.9, so we write,

b b

: ,
a (t-x) 2

a a

(B.12)

Note that Eqn. B.9 is obtained if Bqns. B.IO,12 are substituted into

Eqn. B.5. The integrated terms cancel for either an internal crack

(O<a<b) where

v(a)=v(b) =0, (B.13)

or for an edge crack CO=a, O<b) where
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(B. 14)

The fact that a special interpretation of the strongly singular

integral in Eqns. B.9,12 is necessary apparently reveals that a

"mistake" has been made in the derivation of each equation. This

mistake in Eqn. B.11 is corrected when Eqn. B.8 is used when

integrating by parts as follows,

b x-e

f _ dt =lira {[ ____xt ]x-¢ + f v(t) dt ]
t-x e_O a _ jrt-x _2

a a

b

x+_ (t-x) 2 '
X+_

h x-_

E-O a -E _Jrt-x_2
a

b

_÷_ C_-x)
(B.15)

From Eqns. B.12 and B.15 we obtain a result similar to gqn. B.8 but

for strongly singular integrals:

h x-_

_ v(t)dt = lira {[ v(x-e)+ f v(t) dt ]
a (t-x) 2 e*o -e a (t-x) 2

b

e (t_x) 2
X+E

CB.16)

With this definition Eqns. B.9,12 are correct. Consider for example

v(t)=l.
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b

÷

(t-x)2 E-0 + ia
a

(B.17)

= c+O + _ a-x b-x + _ '

1 1
-- a-x b-x "

(B.19)

Note that this would be theresult obtained if Bqn. B.17 is integrated

directly as though the singularity were not present.

Integrals of this type were studied by Hadmmard in 1923 [66] and

were referred %o as finite-part integrals, a name which describes Eqn.

B.16 where the infinite part is subtracted out. For more information

on finite-part integrals and their use for problems of the type

studied in this dissertation see Kaya [67].

To derive a property that is more useful than eqn B.16 for

evaluating finite-psxt integrals, differentiate Eqn. B.8 with respect

to x as follows.

b

8x -

a

Next differentiate

integration,

b

-_B f _--_xtdt=Bx

a

x-e b

8 lira { I__-_xt dt + f _-_xt dt }8x e_O

a X+E

(B.20)

on the right before the limit is taken and before

X+6

X-_

(t-x) 2
a

(t_x)2
(B.21)
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From Eqn. B.16 we conclude,

b b

}v_ Ldt
a (t-x)2 - Sx a

(B.22)

By expanding v(t) near the point t=x, another method for the

evaluation of finite-part integrals is obtained,

b b

v(t) dt = _ v(t)-(v(x)+(t-x)v'(x))+(v(x)+(t-x)v'(x)) dt

a (t-x)2 a (t-x)2 (B.23)

b b

= v(t]-v(x)-(t-x)v'(x) dt + v(x) (t_x)2(t-x)2
a a

dt

b

+ v,(x)Sldt ,

a

(B.24)

where

dv

v' (x)- dx " (B.25)

If

v(t) = f(t)w(t) , (B.26)

b b b

_ f(t)w(t) dt = f f(t)-f(x)-(t-x)f'(x)-,(t)dt + f(x)_ w(t)

a (t-x)2 a (t-x)2 a (t-x)2

dt

b

+ f'(x)_ _ dt

a

(B.27)

See Appendix A for finite-part and Cauchy principal value integrals

with various weight functions and with some commonly used forms of

f(t).
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APPENDII C

The Compliance Functions

As indicated in chapter two, the mixed-mode line-spring model

requires stress intensity factor solutions of the edge cracked strip

for each of the five losdings shown in Fig. 2.3. Three separate two-

dimensional problems must be solved to obtain these results. The

tension and bending solutions come from symmetric (mode 1) loading,

out-of,plane shear results come from skew-symmetric (mode 2) lolling,

and the antl-plane (mode 3) results are obtained from twisting and

from in-plane shear loading. Note that in-plane for a plate

corresponds to out-of-plane for plane strain and vice versa.

°

C.1Coverning equations for in-plane loading.

The governing equations for the mode 1 and 2 cases are from plane

elasticity where all field quantities are independent of s.

Equilibrium of the solid requires,

8e 8_

xx xy = 0 (C.1)
8x + 8y

8r 8e

xy + yy = 0 . (C.2)
8x 8y

For plane strain, Hooke's law relates stresses to strains in terms of

the material constants _ are u which are respectively the shear

modulus and Poisson's ratio,

- _ [(1-v)e + _e ] , (C.S)
exx - 1-2_ x y
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= 2_ + Vex] (C.4)eyy 1-2v [ (l-v) ey

rxy = _7xy . (C. 5)

The plane stress solution can be obtained by replacing u by v/(l+v).

The straln-displacement relations for linear elasticity are,

_)u 8v 8u 6v (el 6)
ex - 8x ' ey - 8y ' 7xy - 8y 8x '

where u and v are the x and y components of displacement respectively.

If the relations in Eqn. C.6 are substituted into Eqns. C.3-5 and

if the resulting expressions are then substituted into Eqns. C.1,2,

Navier's equations for the displacements are obtained:

V2u + l-2-----v_xL@x + = 0 , (C.7)

1 8 [@u 8v]V2v+ ÷ Vy = o (c.8)

The geometry of the cracked strip and the method of superposition

are shown in Fig. C.1. Any field quantity on the left of this figure,

say f(x,y), is given by,

f(x,y) = fl(x,y) + f2(x,y) , (C.9)

where the subscripts correspond to the geometries on the right. Eqn.

C.9 is used for all relations including the boundary conditions. The

preceeding information will he used for mode i and for mode 2.

C.I.1 Lode 1.

The boundary conditions for the symmetric problem are:

rxy(X,O ) = 0 ,

rxy(O,y ) = 0 ,
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_xy(h'Y) = o ,

Oxx(O,y) = 0 ,

Oxx(h,y) = 0 ,

v(x,O) = 0 , x<a , b>x ,

=-p(x) , a<x<b
YY

To solve problem 1 of Fig.

Fourier transform defined as follows,

,<,<,>.>= s)<,.y>.-i,,<,,.

(C.11)

(C.12)

C.1 we introduce the exponential

f

(0,13)

i(p,y):"+'j_.i(x,y)e ipx dx. (C.14)

the Fourier transforms of Eqns. C.7,8 are taken, the following

(C.17)

, s+;(i ]Ul(X,Y) = _ _ AI(J) + Yll(J) e-lily +

[ A3(/_ ) + yA4(/_ ) ]e +IpIy} e-ipx dp ,

+" ]i..r_(l-_,Vl(x,y) -- _ _® (8) - (I-_ + Y)A2(8) e-181y +
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When

ordinary differential equations result,

8_ p2; 1 ] , (cis)

2_8
p2v 1 + m ] (C 16)

8y 8y 2

These equations are solved for u and v, inverted according to C.13 and

then substituted into Eqns. C.3-5 to obtain,



[A3(_) - ([-_ - Y)A4(P)]e+[_[Y 1 e -i_x dp ,

alxx(X,y) -- _ f+:p{[-2A1_ (p) + A2(p)(_p_ - 2y)] e-IPIY +

[-_cp_-_cp__. _y_lo"p''}o-_px_p,

alyy(X,y) = _ _+:_{[2AI_ (_) + A2(P)(_ + 2y)] e-Iply +

rlxy(X,Y) = _ _+:{[-2'plAI(_)+_ A2(_)(1-'-2'_'Y)] e-[P'Y +

[2,plA3_) + A4(P)(1-¢+2lplY')l e +,_,y) e -i_x d_ ,

where • = 3-4v.

For bounded behavior at infinity

Az(p) = A4(P) --0 .

For problem 2 of Fig.

following Fourier sine and cosine transforms to be used,

(c. is)

(c.10)

(c.2o)

(C.21)

(0.22)

¢

0.1 there is symmetry which allows the

u2(x,a) = oU2(x,y) cosay dy ,

u2 (x, y) - i _.(x, a) cosay da ,

- i®
v2(x,_ ) = ovg.(x,y)sin_,y dy ,

2 _ (x,a)sinay da_2(x'Y) = _ 2

(C.23)

(0.24)

(c._s)

(c.2s)
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After

obtain,

u2Cx'y) = _ BiCa) + B2(a) (a +

[B_C=__,C,_C_x_],==)oo_=,_,.

v2Cx'y) = 7 BIca)+ xB2(a) e-ax +

[B3(a) + xB4(a)]eaX}sinay da ,

= J' (l + <,+,<+..x:>] ,,-,,xa2xx(X,y ) -2/J_ a 2B1(a ) B2(a).-- _- +

I+, + 2x)] eaX}cossy d:[2B3(a) + B4(a)( --7

: _: (V 2x)] e-ax02yy(X,y ) -2._ .{[_2Bl(ll ) + S2(l,.i) _ + ,

[-2Bs(a ) - B4(a ) --c3_'.+_x:>],=')co,,=,<,,,,

j' ({-2:s,<::>+B_.<:::><,-,<-_,,,x:>],-:x+r2xy(X,y) = _ 0

[2%<a)+B4Ca)Cl-_+2.x)]e"X}sln.yd..

Now the

Eqn. C.9.

performing an identical analysis as was done with problem I, we

l-&

AI(P) - 2T_{ A2(P)

(c.27)

(O.28)

(c.2o)

(0.30)

(0.31)

boundary conditions, Eqns. 0.10-12 are applied making use of

First Eqn. 0.10 relates AI(_) to A2(_) as follows,

(C.32)

Now introduce a new unknown,

v(x) : v(x,O),

and express A2(_) in terms of it.
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by(

- a

The unknowns in the problem are v(x) and Bi(a), i=1,...,4.

produce a linear system of

follows,

j=l

where

A = e2ah - (4a2h2 + 2) + e-2e'h

3'11 = -(6-1)e 2ah + [-4=2h 2 - 2=h(e-1) + (_-1)] ,

oh [2,',h, + • - 1] + e "ah [-2,',h -, + 1] ,712 = e

713 = -(6+l)e 2ah + [4a2h 2 + 2ah(6+l) + (6+1)] ,

714 = eah [-2ah6 + 6 + I] + e-ah [-2ah - 6 - I] ,

721 = 2ae 2ah + (4-2h - 2a) ,

ah [_4a2h_ 2a] + 2ae -ah ,722 = e

723 = 2ae2_h - (4a2h + 2a) ,

ah [4a2h _ 2a] + 2ae -ah ,724 = e

731 = [-4a2h2 + 2ah(6-1) + (6-1)] - e-2ah(6-1) ,

ah [2ah (6-1)] + e-ah[-2ah6732 = e ' - + (6-1)] ,

733 = [-4a2h2 + 2ah(6+1) - (6+1)] + (6+1)e -2ah ,

((].33)

Eqns. C.II

four equations that determine Bi(a ) as

((3.34)

(0.35)
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734 = eah [-2ah + (e+l)] -e -ah [2ah_ + (_+1)] ,

741 = [4a2h + 2a] - 2ae -2ah ,

742 = -2ae ah ÷ [-4a2h + 2a] e-ah ,

743 = [4a2h - 2a] + 2ae -2ah ,

744 = 2ae ah + [-4a2h - 2.] e-ah , (c.3s)

and

-1 fb11 = _ (1-at)e-atv(t) dt ,
a

-i fbI2 = 2(-_+_) [1-a(h-t)]e-a(h-t)v(t) dt ,
a

-i fb13 = _ (2-at)e-atv(t) dt ,
a

Ibm-_(h-_)].-_(h-t),_t_dr.
I4 = 2(I+_)" . a (c.s7)

The mixed boundary condition gives a singular integral equation for

v (x), a<x<b.

1

_bv (t){(t-x)2a + Kc(x,t) ) dt +

b

a Kll(x't)v(t) at = -_4# p(x) ,
(c.zs)

where

KC = _ 1 12xt 1
(t+_)_+ (t-_)4(2__t)2 +

12(h-x)fh-t) (C.39)
(2h-x-t)4 '

and
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Kil(x,t ) = _0 [ Sl(X,t,a) + Sl(h-x,h-t,a)

+ S2(x,t,a ) + S2(h-x,h-t,a ) ] du ,

e-(x÷t)a {e-2ah[_2a3xt+a2(3x+3t)_Sa]+SaSh2xtSl(X,t,a ) -

S2(x,t,=) ae(x-t)a

2ah 4a2h2 -2ahA=e -( +2)+e .

For an edge crack a_O.

p(x) = oI ,

and for bending,

2#2 h
p(x)- h [ _ -

The loading for tension is,

x]

(C.40)

({3.41)

(C.42)

((].43)

((].44)

(C.45)

C.I.2 Mode 2.

The boundary conditions for the skew-symmetric case are,

Oyy(X,O) = 0 ,

1"xy(O,y) = 0 ,

_xy(h,y) = 0 ,

axx(O,y) = 0 ,

axx(h,y ) = 0 ,

(C.46)

(C.47)
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T
xy

u(x,O) = 0 , x<a , b>x ,

=-p(x) , a<x<b .

The symmetry of problem 2 in Fig.

conditions suggests the following

displacements,

u2(x,a ) = J_oU2(x,y)sinay dy ,

u2 (x,y) - i. 2 (x, a) sinay da ,

-v2(x,a) = v2(x,y) cosaydy ,

2 _02(x,a)cosay dav2(x,y ) = _

C.l for the

Fourier transforms

When these expressions axe used to solve C.7,8 the result is,

u2(x,y ) = _ -[ Cl(a) + C2(a)( a

v2Cx,y):_ [ci¢5)+xC2Cs)]e-SX÷

ee

f ([ (I+_ 2x) e
a2x x(x,y) = _ 05 2C l(a) + C2(5).-_- +

1÷_ + 2x)] e 5x}[2C3(a ) + C4(a )( _ sinay da ,

(C.48)

above boundary

of the

+

(c.40)

(C,50)

(C.Sl)

(c.s2)

(c.s3)

(C.54)

(c.ss)
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2x ]e="},ioo,d=, (o.56)

"r2xy(X,y) = _ J_o{[-2aCl(a) + C2(a )(1-_-2ax)] e-ax +

[2,%(°) ÷c4(,.)O-,+2,.x)]e=X)_os=yd= (c.57)

The solution to problem 1 in the superposltion of Fig. C 1 is the same

as for mode 1 (Eqns. C.17-21). Eqn. C.46 gives,

AI(_) = 21pl (c.ss)

After defining

u(x) = u(x,O) (c.50)

as a new unknown we can express,

_ u(x)e ipx _ dx .
A2(P) = (_+I) _ dx = (_+1) a

_(c.6o)

The Ci(a ) are determined from Eqns. C.47 to be,

Ci(a) j=l
(C.61)

where 7i j and A are the same as for mode 1 (Eqns. C.35,36) and the

I.'s are found to be,
3

-1 ate-atu (t) dtI1 - 2(1+_) fb
a

1 a(h-t)]e-a(h-t)u(t) dtI2 - 2(1+_) fb
a
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I3 fb- (l-at) e-atu (t) dt

a

fb [l_a(h_t)]e_=(h_t)u(t) dt . (0.62)
I4 - 2(11_) a

The mixed boundary condition, Eqn. 0.48, gives a singular integral

equation for u(x), a<x<b.

1 + Kocx,t) dt + Ki2(x,t) u(t) dt = -_(1+_)
4_ _(x)3ia (t-x) 2 a

where

Zc = 1 12xt 1 12 (h-x) (h-t) (C.64)
(t+x)2 + (t+x)4 (2h-x-t) 2 + (2h_x_t)4 '

and

Ki2(x,t ) = f_[ S3(x,t'a) + S3(h-x,h£t,a )

+ S4(x,t,a ) + S4(h-x,h-t,a ) J da , (c.ss)

S3(x,t,a) - e- (x+t)Aa _ef -2ah[-_"[n.3..,.__.=2 k_'--'"s_j-a] +8aSh2xt

-4a4h2 (x+t) ÷a3 [2hx+2h2+2xt+2ht] -a2 [x+t+2h] +a) , (o.ss)

84 (x't'a) - ae(t-x)aA {e-2ah[a(t-x)+l]+a314h2x-4hxt]

, (0.6z)

2ah (4a2h2 2) + -2ah (C.68)A=e - + e

For an edge crack a=O. To obtain the mode 2 stress intensity factor

for parabollc shear loading we let
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pCx) = #3(21h)2xCh-x) (c.sg)

C.2 Anti-plane shear.

The governing equation for anti-plane shear is,

V2w = 0 ,

where w is the z-component of displacement.

can be written in terms of w,

(c.70)

The stresses and strains

_w 8w

7xz- ax ' 7yz= _y

All other components are zero.

together with Eqn. C.9 are used.

terms of the Fourier transforms of Eqns. C.13,14 and C.25,26 is,

w(x,y) = _ f+_A l(#)e-l#lye -i#x d# +

00 eaX] .2_fof [Bl(a)e -ax + B2(a ) sinay da

There are three unknowns in the

conditions will determine them,

rxz(O,y ) = 0 ,

Cxz(h,y) = 0 ,

ryz(X,O ) = -p(x) , a<x<b ,

w(x,O) = 0 , x<a, xYb

After defining

(0._i)

(c._2)

Again the superposition of Fig. C.1

The general solution for w(x,y) in

(0.73)

above equation and the following

(C.74)

(C.7S)

(C.76)
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_W I

_(x) = ,,,.,E21y=O , CC.77)

Eqn. C.73 becomes,

• +00
1

#(x) _ f_-ipA1 (p)e-*p_ dp. (c.78)

Inversion (Eqns. C.13,14) and Eqn. C.76 give,

-ipAl(p)=  'Z (t)eipt dt =  b (t)eipt dt
a

(c.79)

In order to apply boundary conditions C.74.75, Eqns. C.71,73 and 79

are used to express,

IrxzCx'y) = _ [b 2_(t) dt
Ja 2"2+ (t-x) 2

+2__ f:[_aBl (a)e-aX + aB2(a)eaX] sinay da. (C.80)

Eqns. C.74,75 give the following two inverted equations,

Bl(a) e -ah - B2(a) e ah 1 fb e-a(h-t)= 2-_ #(t) dt = I1, (0.81)
a

BI(a) _ B2(a) : _ fb #(t) e-at dt : 12 ,
a

(c.82)

where the following integral has been used,

[® , --(h-t) (C.83)ysinay dy _ e
y2+(h_t)2 =)0

The solution is,

-Ile-aY+ I2 (0.84)
Bl(a) = -e-2ah+ 1 '
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_ile-aY+ I2e-2ah

B2(a) = -2ah+ ' (C.85)-e 1

where I1 and 12 axe defined in Eqns. C.81,82. Next we apply the mixed

boundary condition C.76. Eqns. C.71 and C.73 must be used to express

lira__ ;b#(t)[+" il__ [P[Y eip(t-x)d_ dt
_yz(X,O) = -p(x) y+O 2f a -j®- p e- +

lim # J'!(t)C_ {-e -a(x+2h-t)+e-a(x+t) e-a(-x+2h-t)+e-a(-x+2h+t)_da,y*O f - _C. 86)

where

D = 1-e -2ah (C.87)

After using the following integrals,

2(t-x) (C.88)
)_®r®-i1pApe-l_ly eiP(t-x)dp = y2+(t_x)2

j'®o_{e-a(.+t)-a(-x+2h-t)) • cotL_h•-e da = _-_ , (c.so)

Eqn. C.87 becomes,

a

(c.oo)

This kernel is equivalent to the following,

1
$ [cot_- cot_h _] t-x (Cauchy kernel)

cot_ (generalized Cauchy kernel)+5 zn

+ x-tl 2hc°_$ . (x-t)_2h (Fredholm kernel) (0.91)

This same problem formulated in a different way has been solved in

closed form (see [77]). The solution for an edge crack is,

h
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_a

sin(_)

ryz(X'Y) = 2_ Jsin2.,x.t_),sin.2(_),a

where

and

g(x)= g(-x),

'. xa,-I
k = tsln_)

The stress intensity factor is defined as,

k3 = lim _ _yz(X,O)x_a

so

_+a gC')i" .2 . 2,,,.
, f

-a sln_(y-x)

dT ,

(C.92)

(C.93)

((].94)

(c.0s)

.1
2 2 I"a

g(at) Jl-k sin (_-_t)

sin,(t-I)

dt , (C.OS)

For in-plane shear,

g(x)= "4 ' (c.97)

so

Because of this simple expression a44 (Bqn. 2.27) can be determined in

closed form,

-4
a44 - lr(1-v) ln[cos(_.)] (C.99)

For twisting,

205
g(x) - h [ b- Ixl ] ' (C.100)
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SO

k3 t n( O -
(0.101)

C.3 Edge Crack SIF Curve Fittin_

The five solutions are listed in table C.1.

solutions required by the

shear (o6) is also included.

The line-spring model

value

table

[65]

to infinity with a power of 3/2.

12

= 1 _ Cik{kgi (_) (1-_)3/2 _ , i = 1,2

For all other cases a 1/2 power is used,

gin ) 1 k_ 0 Cik_k= , i = 3,4,5,6.
(1-01/2 =

In addition to the

line-spring model, constant out-of-plane

requires stress intensity factors at any

of _ = a/h, so a curve is fit to each solution appearing in

C.1. For mode 1 the asymptotic analysis of Benthem and Kolter,

suggests that as _ approaches 1 the stress intensity factor goes

Therefore for gl(_) and g2(_) we use

(c.102)

(0.103)

Although the singular behavior for mode 2 seems to be the same as for

mode 1, (see Eqns. C.38,39 vs. 63,64), the form given in Eqn. C.103

produced a better fit than did 102. For twisting and in-plane-shear

the form of 103 is correct as can be seen by Eqns. C.98,101. The C..
1j

are given in tables C.2,3. These curves reproduce the numbers in

table C.1. The most difficult curves to obtain and to fit are the

mode 1 curves. The limiting values for _ approaching 1 are given in
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[65] to be 1.122 and .374 for tension and for bending respectively.

The curve given by Eqn. C.102 produces 1.1229 and .3735 which shows

both good data and a good curve fit.

For reference the compliance curves that have been used in the

literature to date are listed below. They are for tension and bending

only.

1. Cross and Srawley, 1965, [61], used in Refs. [2,3].

kl L 1 85_ 4}
o1_.,a - _._..,{ .99-.41_+18.7_2-38.48_ 3+53.

, (C.104)

kl 1 1
o__a - _-f"{ "99-2"47_+12"97_2-23"17_3+24"8_4}

z

(c.105)

2. Tada, Paris, Irwin, 1973, [62], used in Refs. [50,51,53,55].

k 1
_ {_tanf-_2} 1/2{" 752+2" 02_+" 37 rl-sin ('_/2) I_cos(f /2) J , (0.106)

k._.__!_.l= _ 2+a.f-_l12['923+'199r1-sin('_/2)]_

02_" a Urn" "" 2] L cos (_/2)

re.107)

3. Kaya and Erdogan, 1980, [63], used in Refs. [54,56-60].

kI
_ 1.1216+B.5200_2-12.3877_4+89.0554_ 6

-188.6080_8+207.3870_10-32.0524_ 12 , (0.108)

kI
_ 1.1202-1.8872_+18.0143_2-87.3851_ 3

+241.9124_4-319.9402_5+168.0105_ 6 (C.109)
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C.4 Line-Spring Kodel SIF Normalization

The stress intensity factor solutions for the line-spring model

are normalized with respect to the corresponding plane strain value at

the center of the crack. This shows how the constraining effect of

the ends affects the crack driving force. The dimensional SIFs

provided by the LSM are

K1 = G_-[ olg1 ÷ %92 ] ' (c.110)

K2 = ,_"h"o3g 3 , (C.111)

K3 = _-_[ u4g 4 + osg 5 ] (C.112)

These are normalized with respect to

KjO = ,_h'_kgk({O ) , -(0.113)

where k corresponds to the loading and j=l when k=l,2, j=2 when k=3,

and j=3 when k=4,5. _ote that the primary SIF is used for alt modes

given in Eqns. C.110-112.
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a/h

.0
•025
.05
.1

.15

.2

.25

.3

.35

.4

.45

.5

.55

.6

.65

.7
• 725

75
775
8
825
85

875
9
91
92
925

.93

.94

.95

Table C.1 Stress intensity factors for an edge
cracked .strip for tension, bending, constant in-

plane-shear, parabolic out-of-plane shear ,
twisting, and constant out-of-plane shear•

STRESS INTENSITY FACTORS

k1 k1 k2 k3 k3 k2

Ol_"a a2_"a o 3_a-'a o'Ja"a OS_'a"a o6_a"a

1.1215
1.1264
1.1399

1.1892
1.2652
1.3673
1.4975
1.6599
1.8612
2.1114
2.4253
2.8246
3.3428
4.0332
4.9843
6.3549
7.2838

8.4532
9.9596
11.955
14.694
18.628
24.634
34.632
40.659
48.632

59.559
75.23
99.14

1.1215
1.0921
1.0708

1.0472
1.0432
1.0553
1 0822
1 1241
1 1826
1 2606
1 3630
1 4972
1.6747
1.9140
2.2459
2.7252
3.0500
3.4582
3.9830
4.6764
5.6248
6.9817
9.0444

12.462
14.515
17.225

20.932
26.236
34.306

O. 1. 1.
0.0670 1.0003 0.9684

0.1313 1.0010 0.9373
0.2522 1.0041 0.8765
0.3628 1.0094 0.8172
0.4638 1.0170 0.7594
0.5556 1.0270 0.7030
0.6392 1.0398 0.6477
0.7156 1.0558 0.5935
0.7859 1.0753 0.5403
0.8512 1.0992 0.4881
0.9131 1.1284 0.4368
0.9733 1.1642 0.3864
1.0339 1.2085 0.3369
1.0980 1.2642 0.2883
1.1700 1.3360 0.2408
1.2111 1.3801 0.2174
1.2572 1.4315 0.1943
1.3102 1.4922 0.1715
1.3726 1.5650 0.1491
1.4482 1.6541 0.1272
1.5429 1.7663 0.1057
1.6664 1.9125 0.0848

1.8368 2.1133 0.0646
1.9251
2.0304
2.0911 2.4114 0.0453
2.1584
2.3185
2.5260 2.9180 0.0273

1.1215
1.1215

1.12155
1.1219
1.1233
1.1264
1.1323
1.1419
1.]562
1.1763
1.2034
1.2391
1.2854
1.3450
1.4221
1.5229
1.5852
1.6578
1.7435
1.8459
1.9708
2.1269
2.3289
2.6037
2.7448
2.9116
3.0074
3.1132
3.3634
3.6854
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Table C.2 The compliance coefficients for gl(()

and g2(() for tension and bending respectively.

COMPLIANCE COEFFICIENTS

Mode 1

k Clk C2k

0 1.12152 1.12152
1 -1.67890 -3.04507
2 8.43058 10.49184
3 -29.46644 -36.66780
4 84.43442 110.09900
5 -182.95329 -255.68184
6 274.45012 421.97167
7 -252.12029 -440.50866
8 92.30672 199.37326
9 62.66657 123.93056

10 -88.30652 -237.97164
11 37.54045 136.17068
12 -5.30201 -28.91005

Table C.3 The compliance coefficients for gi({),

i=3,4,5,6, for parabolic in-plane-shesx, constant

out-of-plane shear, twisting and constant
in-plane-shear respectively.

COMPLIANCE COEFFICIENTS

Modes 2 and 3

k C3k C4k Csk C6k

0 0.0 1.0 1.0 1.12152
1 2.73069 -0.4999949 -1.773760 -0.55939
2 -3.44019 0.2860705 0.937496 -0.18069
3 0.33305 -0.2661996 -0.602894 0.39478
4 2.80514 0.2193511 1.176914 2.07787
5 -2.94406 -0.1731221 -2.183231 -5.40893
6 0.74775 0.1047768 2.906943 5.82745
7 0.63860 -0.0418068 -2.121964 -3.11784
8 -0.32028 0.0075456 0.659759 0.67088
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APPEN1)II I)

Determination of the Weight Function

the

v(x)

The solution of a singular integral equation such as Eqn. B.5 or

strongly singular version, Eqn. B.9 involves obtaining #(x) or

for a<x<h. Before attempting the numerical solution, the

Behavior or weight of the unknown at the endpoints, a and h, should he

determined that will force the singular or dominant integral to he of

the same order as the other terms in the equation. Without this

asymptotic behavior an accurate solution near the ends is difficult to

obtain, although in the central portion convergence is acceptable (at

least for the integral equations studied in this dissertation). We

then seek to obtain a and # defined as,

_(t) = f(t)wl(t ) = f(t)(b-t)=-l(t-a) #-1 ,

v(t) : g(t)w2(t ) = g(t)(h-t)a(t-a) # ,

for finite

gCa), gCh), fCa), fCh) _ 0 ,

(D.l)

(D.2)

(D.3)

where w.(x) are known as weight functions for the integral equation.
1

The typical integral equation studied in fracture mechanics has a

right-hand side (p(x) in Eqns. B.5,9) that is of order one. Here the

weight function must he such that the singular term in these equations

is finite. All through crack problems are in this category. However

for the part-through crack case, only when the crack shape, _(x) is of

the form,
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_(x) = _0(1-x2)7 , 7 _ I/4 , (B.4)

is this condition met. If 7 > 1/4 the line-spring terms will be

unbounded and for 7 < 1/4 they will be zero (see Chapter 2). If 7 >

1/4, such as for a semi-ellipse (7 = I/2), a solution for a<x<b can

only be obtained if a weight is chosen that will duplicate this

unbounded behavior. For the special case where K(x,t) xs" zero (see

Eqn. B.5,9) and 7 < 1/4, the weight function should be chosen such

that the singular integral matches the 7 dependent zero behavior of

the line-sprlng contribution. In both of these cases the weight

function will be such that the displacement profile will be physically

unacceptable. If this matching is ignored and the through crack

weight is used for all 7, a convergent solution to the part-_hrough

crack problem can still be obtained for about 98_ of the domain, a<x<b

without too much extra computer time. Of course this is well beyond

the expected range of validity of the line-spring model, and therefore

all crack shapes will be treated as though the resulting line-spring

terms are of order one. One way to deal with this problem, shown in

Chapter 2, is to force 7 = 1/4 behavior at the endpoints.

- First consider the internal crack case of an equation of the form

o_ B.5. From the basic theory of Kuskhelishvili [78], and from Eqn.

B.22 to extend this theory to finite-part integrals (see Kaya [67]),

we have,

_b v(t) dt _ -#cot,# lira v(x) + 0(1) , (D 5)
lira !
x_a g 2 x_a x-a "

a (t-x)
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rb vCt) dt _ -acot_a
lira!

x+b• a (t-x)2

where

v(t) _ g(t)(b-t)a(t-a) # ,

For Eqns. D.5,6 to be of order one,

cot_p = cot_a = 0 .

This gives,

lirav(x) + 0(i)
x+b b-x

(D.S)

g(a),g(b) _ 0 . (D.7)

(D.8)

= u = 1/2,3/2, .... (D.9)

As a rule for deciding what form to take for finite-part integrals,

Kaya [79] states that all roots should be used such that g(x) and its

derivatives remain bounded at x approaching a and b. Therefore we

a = p = 1/2 , (D.IO)

take,

and

v(t) = g(t) (b-t) l/2(t-a) 1/2 (D.11)

In order to obtain the compliance functions used in the line-

spring model, the edge cracked strip (Appendix C) must be solved. The

crack opening displacement, v(x) will have a different weight function

- than Eqn. D.11. From Eqn. C.39 note that there are integrals which

become -singular when both t and x go to zero simultaneously, so these

terms must be included in the limit as x+O.

b vCt) dt + 1 fb -vCt)dt + lf b 12xt v(t)dt ~ 0(1) ,1

"0 (t-x) 2 _ +0 (t+x) 2 _ "0 (t+x) 4 (D.12)

(D.13)

for

v(t) : g(t)(h-t)at p g(O) g(b) _ 0
, _ •
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The

Re:f. [67] we have,

lim I _h
x'_O • 0 (t-x) 2

lira 1 ;b
o (t+x) 2

analysis for x at b is the same as for the internal crack. From

dt = -pcot,# lira v__ + 0(1) ,
x'tO X

li,_ v__(Zl__ 0(1)
dt = sin_# x*O x

1 _b 12xt 12 (#+l) fl (#-l) lira
0 (t+x) 4 v(t) dt = 3!sin,(#+l) x-O x

+ 0(1)

Therefore the characteristic equation :[or # is,

-#cot,# - _ 2(p+1)fl(fl-1)
sin,# + sin,(#+1) : 0 ,

which reduces to,

-_=L [cos,#- 1 + 2#23 : 0
sin_#

which has the root # = O. Therefore for an edge crack,

v(t) = g(t)(b-t) 1/2 •

(D.14)

(D.15)

(D.16)

(D.17)

-- (D.18)

(D.IO)
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APPBNDIX E

Numerical Methods for the Solution of Singular Integral Equations

In this section the two most common numerical methods for solving

singular integral equations of the following form will be considered:

_b_£_l fbt-x dt÷ #(t)Z(x,t)dt : p(x),
a a

b 8K

a tt-x_2 a

These two equations are equivalent for

8v
vCt)=v+(t)-v-Ct) , _(t)-st,

with the condition

v(a)=vCb) =0,

which for Eqn. E.1 is expressed as,

a<x<b , (Z.1)

a<x<b . (E.2)

(E.3)

fb#(t)dt = 0 (E.5)
a

solution methodsBoth

unknowns and multiple cracks, so for simplicity will be left out.

can easily be generalized to include multiple

E.1 _uadrature.

Here we consider the solution of Eqn. E.1 for the case of an

internal crack. The first step is to express the unknown in terms of

its weight function given in Eqn. D.11. We have,

• f (t) (E.6)

(t) = (t-a) l/2(h-t)l/2

v
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This is substituted into Eqn. E.1 using the following definitions:

h-a b+a

t- 2r+-_-,
(E.7)

b-a b+a

x = -_-s+ -_- , (z.8)

p(x)= _(s), (z.o)

b-a_(r)_(t)= f(r) f(t)- 2
(1_t2)1/2 '

(F,.i0)

b-a
L(r,s)- 2 K(x,t) , (E.11)

to obtain,

_+1 f(r) dr [+1 f(r)

_-i (1-r2)1/2(r-s) + _-i (1-r2)1/2
LCr, s) dr : pCs) , -1<s<1

(z.i2)

We now make use of the quadrature formula

dr = )-i,.h(r.)
j=l J J '

(E.13)

where

_-1 ,N
rj COSN_l_ , j = I,... ,

(E.14)

which are roots of the Chebychev polynomial TN(r), and

wj - N-I ' J = 2,...,N-I ,

X

Wl = WN = 2(N-I)
(s.ls)

This quadrature is exact when the function h(t) is a polynomial of

degree (2N-I) or less and therefore has good convergence when

integrating the well behaved Fredholm kernel L(r,s) in Eqn. E.12 as N

is increased. However the integration of the singular term in this
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values of

integration

values are,

equation introduces a relatively large error which has been found to

be proportional to the Chebychev polynomial UN(r ). Therefore when

s are chosen to make UN zero, the error is reduced and the

is exact for polynomials of degree 2N or less. The s

2i-1 f
i = 1,...,N-1 (B.16)= COSsi N-1 2 '

It is this information that makes the method work. Applying the

quadrature formula to Eqn. B.11, we obtain,

N ls + L(rj'si) ] = P(Si) ,(rj) ['rjj=l J -i
i = 1,...,s-z , (E.17)

which is a system of N unknowns (g(rj) , j=I,...,N) and N-1 equations.

Recalling Bqn. E.5 we supplement Eqn. E.17 with
L

N

_w.f ) = 0 (B.18)
j=l 3 (rj

which can then be solved as a system of linear algebraic equations.

Convergence is obtained as N is increased.

In the case of an edge crack where a = O, the weight function

changes (see Eqn. D.19) and _(t) becomes,

(t) - f (t) (E. 19)
(b_t) 1/2 "

After substitution using Eqns. E.7-11 with a=O, the singular integral

equation, E.1 becomes,

S +1 f(r) dr f+l f(r) L(r,s) dr p(s) -l<s<l÷ = , •

-1 (l-r)I/2(r-s) -1 (l-r) I/2 (B.20)

The necessary quadrature for this weight function is,
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h(r) dr = _-_w.h(rj) (E 21)
j=l J '

where now the values of w. and r. must be obtained numerically as
J

roots of the following Jacobi polynomials:

PN(-I/2"l)(tj) = 0 , j = I,...,N . (E.22)

p_l_2,1)(si) = 0 , i = I,...,N-1 (E.23)

It is easier to use Eqns. E.12-16 and include (l+t) I/2 in the function

f(r). For the edge crack however, Eqn. E.18 is replaced with

h(-1) = h(tN) = 0 . (E.24)

The quadrature method is not a good choice for the solution of

strongly singular integral equations such as Eqnl E.2 because the

existing quadrature formulas for finite-part integrals involve

operations that make solving the integral equations far more

complicated than solving the equivalent equation with a Cauchy

singularity, (see [67]). Perhaps in time a more convenient

quadrature will be developed. A better and simpler approach to

solving Eqn. E.2 is the expansion method, or more specifically, the

collocation method.

as

E.2 Collocation.

First consider the internal crack where the unknown is expressed

v(t) = g(t) (t-a)l/2(b-t) 1/2 (z.2s)
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Note

displacement as the unknown which leads to

integral equation. Again use Eqns. E.7-9 with

vCt) h-a  Cr) (1_r2)I12
- 2

that Eqn. B.4 is satisfied which shows an advantage of using the

a strongly singular

fh-_ 1%K
L(r,s) =

(E.28)

(E.27)

Substituting into Eqn. E.2 we obtain,

_(r)Jl-r2 dr + J_lV(r)(1-r )l/2L(r,s) dr = p(s)
(r_s)2

-l<s<l (E.28)

Next we choose

N

_(r) = j=l_" ajf,i_l(r) , - (E.29)

where fj(r) are linearly independent functions chosen to "fit the

curve w and the a. are coefficients to be determined. I believe that
J

it is best to choose orthoganol polynomials so that the coefficients

show convergence as N is increased. The proper choice for the weight

of Eqn. E.28, is the Chebychev polynomial of the second kind, Uj_l(r ).

With other functions such as a simple power series r j-l, convergence

can only be seen by calculating the sum (Eqn. E.29) as the

coefficients themselves do not converge. Also as N gets large the

coefficients of r j-1 can get large enough to cause round off error as

was experienced with the thin plate limit in Chapter 3. This problem

is avoided when using orthoganol polynomials. These convergence

characteristics are shown in table E.1 where the coefficients, a. are
J
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listed for N = 10 and 20, using both U(2j_2)(r) and r(2j-2) for the

fitting function, f(2j_2)(r) (see Eqn. 29). The problem is symmetric

in r so only even functions have non-zero coefficients. This shows

slow convergence typical of paxt-through crack problems. Although the

numbers for N = 20 and r (2j-2) are large, they give the same result as

the Chebychev polynomials. Kostly all problems can be solved with

power series, but the orthoganol polynomials, I believe, are better.

Next substitute Eqn. E.29 into Eqn. E.28 to obtain,

N ,.+1 fj(rl(l'r2) 1/2 _+1 " }
j_l -1 fjaJi_ 1 (r-s)2 dr + (r)(l-r2)I/2L(r,s) dr = p(s)
= - -l<s<l . (Z.30)

With this method there is no restriction on the choice of s as long as

it does not coincide with r in Eqn. E.30. Roots of Chebychev

polynomials which concentrate points near -1 and +1 are a good choice

when information near the endpoints is needed such as the

determination of stress intensity factors for through cracks. Table

E.2 lists the coefficients for N = 3 and 6 and the resulting stress

intensity factor to show how good convergence is for this type of

integral equation.

A more uniform spacing of points has been found to be a better

choice for convergence of the line-spring model where information in

the central portion is more important (see Table E.3 ). In this table

equally spaced points improve convergence by about one order of

magnitude. Another reason to prefer this choice of sj is that the

solution is most accurate there (recall that the collocation method

gives the solution for all s) and it is more convenient to know the
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solution at these points than at the roots of an orthoganol

polynomial.

For a given value of s there are two integrations to perform in

Eqn. E.30. Any standard technique can he used, for example Gauss-

Chebychev quadrature which takes advantage of the weight,

h(r)(l-r2) 1/2 dr = k=_lWkh(rk) , (E.31)

where

• k_ (E. 32)• (sln ] 2Wk - M+I

kw
r k = cos_ . (E.33)

The first integral can he determined by using Eqn. B.27 or for certain

expansion functions fj(r) such as Uj(r), there are closed form

expressions. For example,

_i UJ (r) (1-r2)1/2
(r_s)2 dr = -_(j+I)Uj (s) (E.34)

See Appendix A or Ref. [67] for similar formulas for other functions

and other weights. Therefore if Eqn. E.30 is evaluated at N different

points, the coefficients, aj , j=I,...,N can be determined. Also a

]east squares technique can be applied if more than N values of s are

selected.

Both numerical methods have Been used in this dissertation, and

the collocation method has been found to be better. One important

advantage of this method is that the number of unknowns is unrelated

to the way in which the integrations are performed. This makes for
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better efficiency. Another advantage is that the function is given at

all points instead of at discrete values of s as in the quadrature

method (Eqns. E.16,24). This makes convergence easier to check

because with quadrature, as N is increased, the stations at which the

function is given, shift. The only common points from one value of N

to another are the endpoint, the most difficult to converge, and the

midpoint which is the easiest. With collocation either the same

values of s can be used for successive N values, or the function can

simply be evaluated at any point according to Eqn. E.29. I have found

the collocation method to be most accurate when N unknowns and N

equations are used as opposed to using the before mentioned least

squares method. This is similar in principle to curve fitting.

For the edge crack the technique is similar except the singular

integral in Eqn. E.30 must be solved numerically because expressions

such as Eqn. E.34 are not available for a (l-r) 1/2 weight. Kaya [67]

has developed a scheme which gets around this. Instead of normalizing

from -1 to +1, he normalizes from 0 to +1 as follows,

t=br,

X = bs

v(t)--b (r),

L(r,s) = b2 8_KK
8t

Then Eqn. E.2 becomes,

_1 _(r)dr-flv(r)L(r s)dr = pCa) O<s<l
0 (r-s)2 JO ' '

Now we cRn use

(E.35)

(E.36)

(E.37)

(E.3S)

(E3g)
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_(r) = g(r) (l-r2) 1/2

Also if

0 _ dr
-1 (r-s) 2

is added and subtracted from Eqn. E.39 we have,

(E.40)

(B.41)

_11 g(r)(l-r2) 1/2
(r-s) 2

dr + g(r) (1-r2)l/2L(r,s) dr -

_0 dr :p(s) O<s<l
_(r) (l-r2) 1/2

"I (r-s) 2

Now the singular term can be evaluated in closed form.

(E.42)
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N=IO

N=20

Table E.1 Coefficients for expansion functions,

Uj_l(r ) and r j-1 for a part-through crack to show

convergence for coefficients of U for increasing N

and to show how power series coefficients get

large.

= .6(I-s2) I/4" , tension.

U (2j-2) (r) r (2j-2)

J alj a2j alj a2j

1 .602954e00
2 -.353661e-1
3 -.633608e-2
4 -.238970e-2
5 -.115589e-2
6 -.672035e-3
7 -.448539e-3

8 -.336133e-3
9 -.280330e-3

10 -.128226e-3

.201102e01

.357367e-1

.297401e-2
120856e-2
878486e-3
658983e-3
514599e-3
429394e-3
389471e-3

.192492e-3

,633626e00
-.995538e-I

.991316e-1
-.223967e0!

.170071e02
-.676896e02

.150545e03
-.188716e03

.124487e03
-.336138e02

.197755e01

.124094e00
-.204339e00

.373660e01
-.275699e02

.107146e03
-.234331e03

.289774e03
-.188933e03

.504607e02

1 .602962e00 .201104e01

3 -.631705e-2 .297507e-2
4 -.236433e-2 .119822e-2 -.116577e02
5 -.112297e-2 .854624e-3 .413200e03
6 -.629824e-3 .61860Qe-3 -.841220e04
7 -.394573e-3 .453260e-3 .109143e06
8 -.266935e-3 .340355e-3 -.963774e06
9 -.191184e-3 .262485e-3 .605181e07

10 -.14320fie-3 .207703e-3 -.278436e08
11 -.111307e-3 .168386e-3 .957704e08
12 -.893108e-4 .139685e-3 -.249352e09
13 -.737318e-4 .118478e-3 .494303e09
14 -.624979e-4 .102717e-3 -.745521e09
15 -.543247e-4 .g10346e-4 .848642e09
16 -.483900e-4 .825134e-4 -.716454e09
17 -.441540e-4 .765362e-4 .434607eOg
18 -.412504e-4 .726940e-4 -.179004e09
19 -.393969e-4 .706965e-4 .448065e08
20 -.190835e-4 .349693e-4 -.514322e07

.633599e00 .197746e01
_ o_lnA_o_l .124878e00

.127104e00 -.752523e00
.472852e02

-.145520e04
.265618e05

-.315897e06
.259884e07

-.153958e08
.674988e08

-.223025e09
.Sfi1471e09

-.108197e10
.159325e10

-.177709e10
.147440e10

-.881107e09
.358246eOg

-.886709e08
.100789e08
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Table E.2 Convergence of expansion function

coefficients a. and normalized stress intensity
J

factor k1/(o2_) for a through crack, a/h=1,

N=3

N=6

j sj aj kl/(o2_'_a)

1 .00000 .255900e01
2 .5877g .126237e00
3 .95106 .103953e-1

1 .00000 .255883e01
2 .28173 .125167e00
3 .54064 .103724e-1
4 .75575 .508637e-3
5 .90963 .159547e-4
6 .98982 .334089e-6

.74742

.74748
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Table E.3 The effect of the choice of the

collocation points, s. on convergence for a part-
3

through crack lo_ded in tension.

= .6(1-s2)1/2 = .6(1-s2) 1/4

j sj alj a2j alj a2j

N = 12
1
2
3
4

5
6
7
8
9

10
11
12

.0

.1

.2

.3
.4
.5
.6

.7

.8

.9

.95

.98

.517675e00 .179305e01
-.826466e-1 -.932252e-1
-.862004e-2 -.478427e-1
-.320951e-2 -.163700e-1
-.154063e-2
-.816275e-3
-.454261e-3
-.249781e-3
-.125213e-3
-.514386e-4

-.148252e-4
-.217783e-5

-.772860e-2
-.413912e-2
-.232331e-2
-.128652e-2
-.650011e-3
-.269770e-3
-.787855e-4
-.117624e-4

1 .0 .517492e00 .179224e01
2 .13617 ".828914e-1 -.945347e-1
3 .26980 -.891617e-2 -.494622e-1
4 .39840 -.353796e-2 -.181809e-1
5 .51958 -.188429e-2 -.963221e-2
6 .63109 -.116178e-2 -.605954e-2
7 .73084 -.796345e-3 -.422672e-2
8 .81697 -.590135e-3 -.317589e-2
9 .88789 -.465276e-3 -.253009e-2

10 .94226 -.386326e-3 -.211617e-2
11 .97908 -.334534e-3 -.184705e-2
12 .99767 -.149021e-3 -.840827e_3

.602986e00 .201108e01
-.353093e-1

-.625598e-2
-.228765e-2
-.103516e-2
-.535729e-3

-.296962e-3

-.165651e-3

-.858241e-4

-.372392e-4

-.116721e-4

-.192020e-5

.357855e-1

.298601e-2

.117540e-2
.799027e-3
.535892e-3
.349407e-3
.218096e-3
.123060e-3
.571948e-4
.189765e-4
.327248e-5

.602958e00
-.353590e-1
-.632578e-2
-.237578e-2
-.113751e-2
-.647982e-3
-.417042e-3
-.294652e-3
-.225401e-3
-.185580e-3
-.163903e-3
-.767395e-4

.201103e01

.357420e-1

.297444e-2
.120271e-2
.864942e-3
.635656e-3
.478286e-3
.375106e-3
.309416e-3
.270293e-3
.251536e-3
.124182e-3
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APPENDIX F

Short Crack Analysis of the Compliance Functions

For small _ (small crack depths) we write,

+ c _2gl (_) = Co Cll_ + 12 -+ c13 _3 + c14 (4 + c15 _5 + "'" ' (F.1)

g2(() = co + c21 ( + c22 (2 + c2363 + c24 (4 + c2565 + ... , (F.2)

where

Cio = Cio , 010 = 020

Cil = 3/2Ci0 + Cil ,

ci2 = 15/8Ci0 + 3/2Cii + Ci2 ,

ci3 = 35/16Ci0+ 15/8Cii + 3/2Ci2 + Ci3 ,

ci4 = 315/128Ci0+ 35/16Ci1+ 15/8Ci2 + 3/2Ci3 + Ci4 ,

ci5 = 693/256Ci0+ 315/128Ci1+ 35/16Ci2+ 15/8Ci3 + 3/2Ci4 + Ci5(_.3 )

where C.. axe listed in table C.2. From Eqn. 2.26,
zj

=11= "I 2+ 2/3C0ClI1/4 4[c 1+2c0c1 1+

+ 2
1/5_512c0c13 + 2CllC12] + 1/6{612c0c14 c12 + 2CllC13] +

I/7_712c0c15 + 2CliC14 + 2c12c13 ] + 0(_8)} , (F.4)

= + 2
=22 "{ 1/2c_ (2 + 2/3c0c21 (3 1/4(4[c21 + 2c0c22] +

+ + 2 +

i/5(512c0c23 2c21c22] + i/6(612c0c24 c22 2c21c23 ] +

I/7_712c0c25 + 2c21c24 + 2c22c23] + 0(_8)} , (F.5)
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,,°

1/4{4[CllC21 + c0c22 + c0c12] +

1/5{5[c0c23 + c0c13 + c11c22 + c21c12] +

1/6{6[c0c24 + c0c14 + c11c23 + c21c13 + c12c22 ] +

1/7{7[c0c25 + c0c15 + c11c24 + c21c14 + c12c23 + c22c13] IF'.6)

Eqn. 2.33 relates 7i j to aij as follows

_1_'_,11:"(_41_'°_o_1_¢_E,/_coo,1_1+,'4,_ •

_-211/4(¢_1• 2¢0¢22)_1+ 2/3¢0¢2162+ 1/2¢2o63] +

f-112/5(¢0c23 + c21c22)51 + 1/4(c21 +-2c0c22)62 +

2/3¢0¢2163 + 1/2c_64] + 0(I)} ,

"2 ( 20 + 2+ $-31213c_c..6. 1/2c 62] +2R(1-,, _- = # _ -41/p'r 51 _ =-: u ll l-'"" " ''22 -- -

_-2[1/4(c21 + 2c0c12)61 + 2/3c0c1162 + 1/2c263 ] +

_-112/5(c0c13 + c11c12)61 + 1/4(c21 + 2c0c12)52 +

2/3c0c1163 + 1/2c2064] + 0(1)} ,

-6(1-u2)712 = -6(1-U2)712 = Ir{_-41/2c261

(F.7)

(F.8)

+ ,_-311/3c0(Cll + c21)61

+ 1/2c262 ] + f-2[1/4(c11:21 + c0c22 + c0c12)61 +

1/3c0(Cll + c21)62 + 1/2c263 ] + C1[1/5(c0c23 + c0c13 +
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c11c22 + c21c12)61 + 1/4(CllC21 + c0c22 + c0c12)62 +

1/3c0(cll + c21)63 + 1/2c2641 + 0(1)} ,

where

1

61 - A1 '

and

(F.g)

A2
6 2 :-_-_ ,

A1

A_-A1A 3
63 - 3 '

A1

3 2

A2-2AIA2A3+AIA4 (F. 10)
64 : 4 '

A1

2 2 2 2
A1 _ {1/8c0(c21+2c0c22÷c11÷2c0c12 ) + 2= 4/9C0CllC21 -

2 2 2 +
11gc0(c11+c21 ) - 114c0(CllC21+c0c22 c0c12)}-,

= 2 2
A2 • (1/5c0(c0c13+CllC12+c0c23+c21c22) -

2 2 2
1/6c (c c +2c c c +c c +2c c c ) -0 11 21 0 11 22 21 11 0 21 12 1/5c0(c0c23+c0c13 +

t
%

c11c22+c21c12 ) - I/6c0(c11+c21)(CllC21+c0c22+c0c12)_ ,

2 2 2 2
= x 1/12c (2c c +c +2c c +2c c +c +2c c ) +A3 { 0 0 24 22 21 23 0 14 12 11 13

4/15c (c c c +c c c +c c c +c c c ) +0 0 11 23 11 21 22 0 21 13 21 11 12

2 2
1/6c_( 0 24 0 14 21 13 12 221/16(c11+2c0c12)(c21+2c0c22 ) - c c +c c +c c +c c +
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2
c11c23) - 1/16(CllC21+c0c22+c0c12 ) -

2/15c0(c11+c21 ) (c0c23+c0c13+CllC22+c21c12)) ,

A4 = "2{2/14c20(coc25+c21 c24+c22 c23 +coc15+c11Cl4+Cl2Cl3) +

2 2
1/9c0 (2C0CllC24+CllC22+2c21CllC23+2c0c21c14+c21c12+2CllC21C13) +

1/20(c121+2c0c12 )(2c0c23+2c21c22) +

2
1/20(c221+2c0c22 ) (2c0c13+2CllC12) - 1/7c0(c0c25+c0c15+CllC24+

c21c14+c12c23+c22c13 ) - 1/9c0(c11+c21 ) (c0c24+c0c14+CllC23 +

c21c13.c12c22J - i/luCc11c21+c0c22+c0c12j kc0c23+c0c13+

CliC22+c21c12)} _(F.11)

Now I have

711 = Sl_-4 + s2_-3 + s3_-2 + s4_-1 + 0(I) , -(F.12)

722 = ql_-4 + q2 _-3 + q3(-2 + q4_-I + 0(I) , (F.13)

712 = 721 = tl _-4 + t2 _-3 + t3{-2 + t4_-1 + 0(1) ,

where s£, ti and qi, i=1,2,3,4 can be obtained from Eqns. F.7-9.

consider the stresses (recall Eqn. 2.31),

aI = u(s)711(_) + p(s)712(_) ,

a2 --u(s)_21(_)+ P(s)722(_),

where for the remaining analysis,

= _o(1_s2)1/2

(F.14)

Now

(F.15)

(F.lS)

(F.17)
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I will also assume that the loading is symmetric

following expressions for u(s) and _(s) are used,

N

u(s) = (l-s2) I/2 j__ZlaljU(2j_2) (s) ,

N

_(s) = (l-s2) 1/2 j_..la2jU(2j_2)= (s)

For small _ or for s near 1,

in s, so the

(F.18)

(F.IO)

N

u(s) = __0 j_l alj(bj+= _2cj) + 0(_4) ' (F.20)

C_ N
= _0 j--Zla2j{bj + _2cj) + 0(_4) ' (F.21)

where

- (F.22)b. = (2j-1) ,
3

-4 _ .2 (F.23)

i=i

The followlng expressions result for Eqns. F.15,16,

N

1 _. alj{_-3bjSl + _-2bjs2 + _-l(bjs 3 + CjSl ) +
°1(_) - _0 j:l

(bjs4 + cjs2) ) +

1 N {-3bj + (-2bjt2 _-1+ _0 _ a2j{ tlj=l + (bjt3 + cjtl) +

(bit 4 + cjt2) ) + 0({) , (F.24)

N

a2(_ ) 1 _ alj{{-3bjtl + _-2bjt2 _-1
- _0 j=l + (bjt3 + cjtl) +
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(bjt4 + cjt2) } +

N
1

+_o_
j=l

+ {-1a2j{{-Sbjq 1 + {-2bjq2 (bjqs÷ cjql)+

(hjq 4 ÷ cjq2)) + o(0 (F.25)

Using the prediction of Chapter 2 that the stresses must have a square

root singularity at the ends, i.e. {-1, we must have,

N

L z:: + •
{o j=1

N {(3bjh _-2bj_2}Z % * =0, :CF.2S)
j=!

1 N {_3bjt I {_2bit 2
j_l aljl + I+_0"=

_01 j=l_ a2j({-3bjql+ {-2bjq2) = 0 '
(F.27)

N

aljb. =0
j=l J '

(F.28)

and

This

N

jZ1 a2jb j = 0 .°_

(F.29)

is equivalent to saying that the through crack stress intensity

_actor is zero, because

kI N
¢ Z a..h. i=1,2 . (F.30)

o_ j=l ij j '
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APPENDIX ¢

Stress Intensity Factors

G.1 Elasticity Theory.

The study of the static stress distribution near the tip of a

crack in a linear, elastic solid has been reduced to the determination

of constants called stress intensity factors (see Irwin [68,69]). To

illustrate this consider the two-dimensional plane geometry where

Williams [4] and Sih [80] have given the asymptotic form of the

stresses of in-plane and anti-plane loading, respectively. These

solutions, presented below, are obtained by use of eigenfunction

expansions which satisfy the crack surface boundary conditions. The

coordinate system is chosen to duplicate the through crack geometry

used in this dissertation where the crack lies in the yz-plane with z

tangent to the crack front. The polar coordinates r,O are measured

from the crack tip and lie in the xy-plane.

kl O 4.38 k2 O 8302cos_ [l-si ] --- • cos_cos ] +
#Y "---2_r sln-_ 2_r sln_ [2 +

2n-1

+ _ [blnr 2
n=l

fin(O) + b2nrnf2n(O) ] , (G.1)

kl cos-e2[l+sin_ . 30 k2 •sln-_ ] + sln82 cos_82 30_'2 _ _ COS-_ +

2n-1
W

+eOx + _ [b3nr 2
n=l

f3n(8) + b4nrnf4n(O)] , (c.2)
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O
z

T
xy

-_ 2v
kl e

COS_

k2 .o]sin_ + _a0x +

2n-___!
W

+ _ [b5n r 2
n=l

fsn(O) + b6nrnf6n(O)] , M.3)

kl .e e 3e k2 cos_82[1-sin_ .3e~- +- s_-_ ] +_ _ sln_ co_ cos-_

2n-I

+ _ [bTn r 2
n=l

-- f7n(O) + bsnrnfsn(O)] , (G.4)

2n-I

k3"On_l[sln_ 2__ -- + b9nr
rYZ 2_7r =

fgn(O) + blOnrnflon(O) ] ,

(c.5)

2n-I

rxz _---_k3cos_O + _--_®[bllnr-2--=
f11n(O) + bl2nrnfl2n(e)] . -_((].6)

The

the

plane) modes of fracture shown in figure ft.1.

G..1-6 exist for displacement as follows,

stress intensity factors are kl, k 2, and k3 which correspond to

opening (symmetric), sliding (skew-symmetric) and tearing (anti-

Equations similar to

k1

v(r,O) __ _ 2_l_r [(2_-l)cos_ - cos_]

k2

k 1
u(r,O) -_ _-_ 2_r [(2,+l)sin_- sin'S]

- 8--_ 2_r (2_-3)cos_ + cos , (o.s)
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Wf" _ _ _ sin_ , (G._)

where p is the shear modulus, v is Poisson's ratio, and _=4-3_ for

plane strain and _=(3-v)/(l+v) for plane stress. Clearly the stress

intensity factors play the important role in the expansion near the

crack tip and have been shown to play an important role in fracture

[68] or more recently [70].

The singular terms in the stresses have also been shown to apply

to geometries other than plane strain. Irwin [68] examined Sneddon's

solution [81] of a circular shaped crack in an infinite solid under

mode 1 loading and found that in a plane normal to the crack front the

definition of k 1 is the same as for the straight crack front of plane

strain. Since then Kassir and Sih [82] have proven this to apply for

a plane elliptical crack under general, or mixed-mode loading

conditions. It may be assumed that this result will hold for any

plane crack with a smooth crack front, see Ref. [83].

From Eqns. G.1-9 we define the stress intensity factors in terms

of stress and disp]acement below.

k 1 =
lim J2(y_b) o (0 y,z)
y*b x '

lira 1 [ u(O+,y,z) -u(O-,y,z) ]
•+I y*b J2(y-b)

k2 = lira 42(y-b) ,z)y*b rxy(O'Y '

_2#lira 1 [ + ]- _+1 y*b 42(y-b) v(O ,y,z) - v(O-,y,z) ,

k3 = lim 42(y-b) ,z) ,y*b ryz(O'Y

(G.10)

_ (G.I1)

(G.12)

(G.13)

(G.14)
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_lim 1 [ + ]= 2 y_b _2(y-b) _(0 ,y,z) - m(O-,y,z) (G.15)

These expressions are not valid at the point where a crack front

meets a free surface. Benthem [1] has found that the stress

singularity at this point is dependent on Polsson's ratio and is not

equal to .5. The values for the order of the singularity are given in

table

and 3

of .5

[33].

G.I. For mode 1 the exponent is less than .5 and for modes 2

it is greater than .5. In most theoretical work a singularity

is assumed along the entire crack front, see for example Ref.

G.2 Plate and Shell Theory.

The typical expression for stress resultants in either plates or

shells is of the non-dimensional form

ci ui(t)
Fi(O'Y) = _- a (t-_ dt + 0(I) , y<a, b<y , i=l,...,5 , (C.16)

from which the singular integral equations are obtained

c i _b ui(t) dr+
-_k6ik - i a (t-y)2

5 b

faUj(t)Kij(Y,t ) dt , a<y<b , i=I,...,5 ,j=l

where k

for i=k.

"a" represents the dimensional form, and "bI the non-dimensional.

{ F } = { N11/hE, M11Ih2E, V112(1+v)/5hE , N12/hE , M12/h2E }

(G.17)

corresponds to the loading where 6ik is zero for i_k and one

Fi, ci,and ui are defined in the following equations where
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= { Nxx' Mxx' Vx' Nxy' Mxy } '

{Nll, MI1, VI, N12, MI2 } =

{ hOlD, h2/(6)O2D , 2h/(3)O3D, ho4D, h2/(6)oSD }

{ Nxx, Mxx, Vx, Nxy, Mxy } =

{ oI, %16, os8(l+v)IS, #4' °ale ) '

oi = OiD/E ,

{ c } = { 1/2, 1/24, 1, 1/2, 1/24 } ,

{ u ) = { Ux/h, Px'Uz/h' uy/h, py )

= (u 1, u2, u3, u4, u5 } ,

with only one exception for the she11,

Uy(t) = hu4(t ) + (X2/X)2tu3(t) ,

where 12 and X are shell parameters defined in Appendix A.

the

using fl.I0-15 we first convert ft.17 to

1 _i fi(r)(1-t2)l/2
-1/Pk6ik = _ (r_s)2 dr

5 +1

+_.j=l_ __11 fj(r)(1-r2)l/2Lij(s,r) dr

(G.18a,b)

(G.19a,b)

(c.2o)

(G.21)

(G.22a,b)

(G.23)

To obtain

stress intensity factors (both primary and secondary) from G.17

,-l<s<l, i=I,...,5 , (G.24)

b-a b+a b-a b+a (G.25)
t- 2 r +-_- , y- 2 s +-_- ,

Lij(s,r) = ((b-a)/2)2Kij(y,t)

where

(G.26)
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uj(t) = (b-t)I/2(t-a)I/2gj(t)

b-a gJ (r) (1-r 2) i/2-- 2

c.1 _k _ fj (r) (1-r2) 1/2 , (G.27)
3

a k : PkFk , (G.28)

< P } : { i, 8, s/(sO+v)),I, 8 } (o.29)

To calculate stress intensity factors we require the three-dimensional

stress in dimensional form. From Eqn. G.16 with substitutions from

G.25-27,

F. (O,s) ,+1 f. (r_ (1-t2) 1/2

._ _ ji x " " " dr + Oil ) i:l ,5 (G.30)
a k -1 (r-s) 2 ' ' ....

From Eqn. G.28, using G.25 to convert functions of y to s denoted as

such by a bar, we obtain,

ai(O,s) Fi(O,s)
O0 00

a k a k

p. . (C.. 31)
X

In terms

equivalent,

of this stress ratio, (dimensional and non-dimensional are

see Eqn. G.20), the stress expressions needed for Eqns.

G.10,12,14 are,

;l(°'s)
%(o,y,,) : _kV hl (') _k for tension, (mode 1),

[_2(°'s)]
: _kD h2(z) _k

for bending, (mode 1),
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f _3(O,s) 1
Tyz(O'Y'Z) = _kD h3(z) [ ;k J

..... • ^___I_.= shear,

(mode 3),

[ _4(O's) ]
_xy (O'y'z) = _kD h4(z) "_k

for in-plane shear,

(mode 2),

[ ]
: _kD h5(z) _k

for twisting, (mode 2), (G,32)

where hi(z) are

{ hl(Z), h2(z), h3(z), h4(z), h5(z) } =

Next

= { 1, 2z/h, [1-(2z/h)2], 1, 2z/h } . (G.33)

we use the following result from the asymptotic analysis of

singular integrals,

+1 fi (r) (1-t2) 1/2

s*llimIf_-I (r-s)2

dr ~ lira fi (s) + 0(1) ,Isl>l (C.34)

s*l 42(s-1)

From Eqns. G.I0,12,14 we can write

lim _2(y-b) #(0 y,z)
kj = y*b

(G.35)

which becomes after using G.25,30,31,32,34,

J
lira [_] I/2 f.(s)
s*l 12 (s-l) _kDhi (z)Pil2 (_-I)

, (fi.36)

: I_-_] I/2=akvhi (z)Pifi (i)
(G.37)

where j=l

functional

sufficient

for i=1,2, j=2 for i=4,5 and j=3 for i=3. Because the

z dependence is known for each of the loading cases, it is

to use the maximum value of hi(z) which is one. After
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normalizing,

k°

,J

_kDI_]l/2 - Pill(l)

(G.38)

for the crack tip at y=b and similarly for y=a

k.

_kDI_1112 - Pill(-1)

((].39)

In solving the integral equation, the function fi(r) is

determined on the interval -l!r!l. It is therefore a simple matter to

determine the value at the endpoints for substitution into G.38,39.

Next the stress intensity factors will be calculated in terms of

the displacement. From Eqns. G•lga,b

u(O,y,z) = hul(O,y) + (2z/h)h/2u2(O,y) ,

v(O,y,z) = hu4(O,y ) * (2z/h)h/2u5(O,y) • (C.40)

The expression for the out-of-plane displacement w, is not known as a

function of z and will be dealt with later. For modes 1 and 2 we

proceed as follows• Eqn. G•27 is substituted into the above

displacement expressions and then Eqns. G.II,13,15 are used to write,

k. --

J
hE lim 1 h i(z)y _ fi(s) ]l-s 2
7j5 i y*b 12(y-b) x"_k

hi (Z) kD I12fi (1) ,
7j6ic i

i#3 (C.41)

where

+ 2# - E 3-u• = u. = -u:, l+v ' _ -Ul 1 1 l+v '
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7j = 2, j:1,2 (i.e. i=1,2,4,5) , 73 = 2(l+v) ,

5. = I, i=1,3,4 and 6. = 2, i=2,5 . (G.42)
1 1

Therefore the normalized stress intensity factors calculated from

displacement are,

ki f (1)

_kDI_._a] 1/2- 7j@ici

(c.43)

and

k. fi(-1)J

_'.kD[_b__.a]1/2 - 7j6ici

(G.44)

From Eqns. G.38,39 and 43,44 we should have,

lIP i = 7j6ici
-_ (G. 45)

First note that if the primary stress intensity factors for both

stress and displacement are the same, the secondary SIFs will also be.

The four cases (i=1,2,4,5), are shown below to be equivalent when

defined in terms of stress or displacement indicating a compatibility

between this plate theory, which includes transverse shear

deformation, and elasticity theory for modes 1 and 2:

i=___11,lIP 1 --1

7161c 1 = (2) (1)(1/2) = 1 ,
(G.46)

i:__22, lIP 2 : 1/6

71_2c 2 = (2)(2)(1/24) = 1/6 ,
(G.47)

i:__44, lIP 4 = 1
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3

is

7264c 4 = (2) C1)(112) : 1 , (G.48)

i=5, lIP 5 : 116

7265c 5 = C2) C2)(1/24) : 116 • (G.49)

As mentioned above, for out-of-plane shear which represents mode

loading, there is a problem. The displacement plate variable u
Z )

an average quantity defined in terms of the actual displacement w

as follows, see Timoshenko [84],

,+h/2

. = - (c.so)

The z dependence of uz cannot be determined because of the plate

assumption concerning ez) i.e. u z = O. Therefore the stress intensity

factor cannot be defined in terms of displacement. It can only be

shown that the stress intensity factor obtained from uz is equal to

the weighted average using G.50.

First assume that the actual out-of-plane displacement can be

expressed as,

w(x)y,z) ~ wCx,y) : hUzCX,y ) (C.51)

Then by an analysis similar to that used for i=l and 4 above)

k3avg 13(1) f3 (1)

_kDI_} 112 - 7363c3 - 2(1+v)

(G.52)

The stress intensity factor from stress is given by G.37 to be,

k3Cz) 5f3(1) 21 (c.s3)
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When this is substituted into Eqn. G.SO, we obtain,

3 :+h/2 [1 (2z/h) 2] dz
k3avg - 2h J_h/2k3 (z) -

i/2. 1t =j °kDf3 (1)_(i+_) , (G.54)

which is the sa_e as predicted by Eqn. G.52.

The shell displacement component of Eqn. G.23 also is only known

as an average quantity because of its association with u . Here
Z

v(O,y,z) = hu4(O,y ) + (k2/k)2(y/h)hus(O,y) +

+ (2z/h)h/2us(O ,y) (G.55)

Again only in the average sense does this form comply with the theory

of elasticity so stress is used for the SIF calculation.

It should be noted that a stress singularity of .5 is assumed at

the free surface for all fracture modes. In mode 3 the parabolic

shear assumption forces k3 equal to zero at the plate surface When in

fact Benthem [1] predicts it to be infinite. However the surface

effects are not believed to greatly influence the value of the SIF

away from the surface and in most work a singularity of .5 is assumed,

see for example Refs. [33,43].
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Table G.I Strength of stress singularity for the

intersection of a straight crack front with a free

surface in a half-space, Refs. [1,85].

Poisson's Stress Singularity

ratio mode 1 modes 2 and 3

O. *-.5 *-.5
.15 -.4836 -.5668
.3 -.4523 -.6073
.4 -.4132 -.6286
• 5 -.3318 -.6462
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Mode I
Mode II

Mode III

Figure G.1 Crack surface displacement for the

different modes of loading.
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APPENDIX B

Thin Plate Bending Limit of Fredholm Kernel

We consider the behavior of the Fredholm kernel of Eqn. 3.130 for

a/h approaching infinity. Define

s f+l_ KCz)gCt) dt , CB.1)
ICy,alh) ,(l+v) (alh)2-1

where

24
K(z) --48 4 4Ko(z) + 4K2(z ) + 2K2(z) (n.2)4+-_ -

Z Z Z

z = pit-y[ , p = (10)l/2(a/h) = p(a/h) (H.3)

First consider the limit for y outside of the crack. This case is

simple because as a/h gets large, z gets large. The only contribution

from K(z) comes from the 4/z 2 term. For [yi>1,

2 [+1 g(t) dt

a/h*'limitI(y,a/h) - ,(l+u) )_1 (t-y) 2
(H.4)

For y inside of the crack domain the variable z can be of order one at

t near y so it is not clear that these terms are negligible even for

large a/h. 'Rewrite I(y,a/h) as follows,

5(a/h)2j,+1 p2 _+I= K(z)g(t) dt ,(H.5)
= K(z)g(t) dt 2,(1+//) -1I (y,a/h) x(l+y) -1

2 y f+l
P ..{ _ KCz)gCt ) dt + j KCz)g(t) dt } , (U.6)

- 2,(l+Y) -1 y

= 2_(l+v)P (fp(l+Y)K(u)g(y_u/p) du + _oP(l-Y)K(u)g(y+u/P)du IH 7)
--0
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K(.)a(y-u/p) an +
2,(l+v) _ Jp(1-y)

P(1-Y)K(u) [g(y+u/p)+g(y-u/p)] du )Io (H.8)

Next write Taylor expansions for g(t) as follows,

n 1
gCy-u/p) = _C-1) _.t Cu/p)ngn(y) ,

n=0
(n.g)

g(y+u/p) : _ _,. (u/p)ngn(y) , (n.10)
n=O

where gn(y) denotes the nth derivative of g(y). These expressions are

substituted into the second integral of Eqn. H.8. Because of symmetry

only y>O will be considered. After rewriting the first integral using

a simple substitution, Eqn. H.8 becomes,

I(y,alh) = 21(1+u)

+ _'(l+v) _ (2n)! g2n(y)

(B.11)

Now consider the limit of these two terms separately. Since the first

integral is not singular for y<l, as p gets large all terms of K(z) go

to zero except the 4/z 2 term. Therefore we have,

limit p2 t'-l+2y . .,

"]-I K[p(y-_)]g(t) dt-a/h-_oo 21r(l+v) _r(l+v)
f -l+2y_(t) dt

-I (t-y) 2
(B.12)

Now for the second integral of Eqn. H.II. For large u

Kn(U ) ~ [x/(2u)]l/2e-U(l+a/u+...) , (H.IS)

where Kn(U ) is a Bessel function and a is a constant. The important
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feature is the exponential decay. It can be shown that,

OO n

u -u -u (H.14)--e du ~ e

Now divide the second integral in Eqn. H.11 into two integrals,

fp(1-Y)2n f_ fP(1-Y)2nK(u) du ,0 u K(u) du = u2nK(u) du + e
(1t.15)

where E is sufficiently large such that the exponentially decaying

Bessel functions may be neglected when integrated from 6 to infinity,

(here we assume that e<p(l-y)). The first term in the series, (n=O)

requires special treatment.

¢0

K(u) du
Jo

where

Auj

K(u) du = + - + - (u) = 0 (11.17)
U U

0 u 0

Now we make use of Eqn. 11.14 to evaluate

W

f K(u) du-_ f (4/u2) du__ 4 (H.18)
p(1-y) p(l-y) p(1-y) , '

to leading order. The second integral in Eqn. H.I5 for n__l including

the coefficient of p-2n from Eqn. H.11 becomes,

p-2n fP(I-Y)2nK(u) du "z_p-2n fP(1-Y)u2n(41u2) du
c

4 { 1 E2n:l/p2n) ~ 4 1(l_y)2n-12n-I p (l-y)2n-l- - 2n-i p
(H. 19)

Now for the first integral in Eqn. H.15. For n_l this integral with

the p-2n coefficient from Eqn. H.11 is,
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-2n I"_ 2n .... #-1
p J u _tu) du < O( ) (H.On_._j

0

In the limit as p gets large, this term will not have an order one

contribution to I(y,a/h) because c<<p and therefore it_is neglected.

Now we substitute Eqns. H.12,16,18,19,20 into H.11 and obtain,

a/h*_ l (Y' x(l+v) dt +

® (2n)tl 2n(,(l-y) 2n-1}2n_l+ g(y) + 2 _ g yj
n=l

Now look at the first integral of Eqn. H.21.

)-1 (t-y) 2 (t-y) 2

Substitute the expansion,

_-I+2y g(t)dt - dt
J1 (t-y) 2

nlg(t) = (-11 _. (t-y)ngn(y)
n=O

into the second integral of H.22 and after some algebra,

,-1+2y ® n 1

_-l+2y g(t)dt = _1 n--_=O(-11 _ (t-y)n-2gn(y) dt =
I1 (t-y)2

® 1 (l-y)2n-I
= -2_-_ (2n),.g2n(y) 2n-1

n--O

When this is combined with Eqns. H.21 and 22 we obtain,

2 _-1 _N_d tlimit..
,a/h)

(l+y) +1 (t-y) 2 '
a/h_® l _Y

which is perhaps the expected result considering gqn. It.4.

for

(n.21)

(H.22)

(H.23)

(H.24)

(R.2s)

The reason

going through this algebra (and there is probably a better way),
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is to show that this derivation fails for y sufficiently close to one.

Eqns. H.12,18 and 19 are valid only for,

1 - o(1) (H.26)
p(1-y)

In the limit as p goes to infinity, the quantity (l-y) must be such

that the product p(l-y) still goes to infinity. Otherwise Eqn. H.25

is not valid. For more information, see Chapter 3.
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The major expense in solving an integral equation on the computer

is in the evaluation and the integration of the Fredholm kernels. In

the shell problem for each point used to integrate the Fredholm kernel

an infinite integral must be determined. The plate kernels are known

in closed form but involve evaluation of Bessel functions.

Log integrals and integrals of the form,

+1

(t-y)nlnit-yl (l-t2) 112 dt , -1<y<+1 , (I.1)
-1

which appear in both the plate and the shell equations, (and in many

other problems) may be the determining factor for convergence-of the

integration of the Fredholm kernels. Gauss-Chebychev integration (see

Eqns. E.31-33) is used to show this difficulty for small n in table

1.1. The number of points used to integrate Eqn. 1.1 is N. The

closed form expression used may be found in Appendix A. The value of

y does not have a significant effect on these results. Because of

this slow convergence log terms were separated from the kernels for

n_3 with the option of doing them in closed form. The following

asymptotic analysis of the log terms for z = p(t-y) approaching zero

is given for the plate kernels where the subscripts 2,3 and 5

respectively correspond to bending (Mxx), out-of-plane shear (Vx) , and

twisting (Mxy) .

K22(z) ~ 2_ lnCz) + c I + { (_)21nCz) + OCz41nCz)) , (I.2)
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s p2(_32i_(_ _ oC4in(_)) CI.33K33(z) ~ -p21nCz) + c 2 - _ + ,

2
K35(z ) ~ -p(_)in(z) + c3z- _ p (_)31n(z) + o(zSln(z)) , (1.4)

KsS(_).psT(i_,)[I • i_ 1_(_)inCz)* c4z+ _(_)3in(_)+ O(,Sin(,))
1.5)

K55(z ) ~ _ in(z)+ c5 + _ (_)21n(z) + O(z41n(z)) , (1.6)

where the ci's are constants. In the shell problem these types of

terms come from the large a behavior of the infinite integrals, see

section J.4 of Appendix J.

To show how these terms affect the convergence of the stress

intensity factors, table 1.2 lists results for the plate bending

problem solved in three different ways. First both log(t-y) and
._

(t-y)21og(t-y) terms of Eqn. 1.2 are evaluated in closed form. Then

only the log term is evaluated in closed form. Finally both terms are

integrated numerically. In the case where the Iog term was integrated

n1!merically, convergence was unstable for increasing N . The table

shows improved convergence when the z21nz term is evaluated in closed

form. It should be noted however_ that as a/h gets large the

coefficient of this term is proportional to (a/h)2, and it becomes

unwise to separate it from the rest of the Fredholm kernel. This is

generally the case when doing part of the Fredholm kernel in closed

form. For certain parameters the two separate terms become

increasingly equal and opposite and consequently big numbers are added

to small numbers and accuracy is lost. This typically occurs for the

most interesting/difficult geometries. Table 1.3 is similar to 1.2
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but for out-of-plane shear and for twisting. Here there are five

different cases as can be seen from Eqns. 1.3-6. Again it is

necessary to factor out the log term. The other terms are not so

important. _y conclusion is that for other than the log term, a

closed form solution should only be used when repeated calculations

are necessary for an "expensive" problem.
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Table 1.1 - Convergence of log integrals (see Eqn.

1.1) using Causs-Chebychev integrstion N--_

corresponds to closed form.

Convergence of Log Integrals

y=.49

n--O n=l

N
20 -.1578327285023e01 .84937508786?8e-1
40 -.1492930970972e01 .8768209651665e-1
60 -.lalvozlvoz_eOi .8713681420222e-1
80 -.1482919042609e01 .8693758759624e-1

100 -.1531715634235e01 .8700300152495e-1
200 -.1492468021175e01 .8708543360460e-1
300 -.1491702663902e01 .8705949644705e-1

n--2

-.4311621931347e-1

-.4319761807491e-1
-.4320566456916e-1
-.4320296083838e-1

-.4320130620737e_1
-.4320230905703e-1
-.4320231744712e-1

® -.1497043010486e01
n=3

N
20 -.5934890759307e-1
40 -.5935358973931e'1

60 -.5935323791180e-1
80 -.5935318085722e-1

100 -.5935320220412e-1
200 -.5935320644195e-1
300 -.5935320568158e-1

.8706261970927e-1

n=4

.1070779572998e00

.1070783355533e00

.1070783468198e00

.1070783448821e00

.1070783444628e00

.1070783446586e00

.1070783446588e00

-.4320228921493e-1
n=5

-.1692569091885e00
-.1692568662971e00
-.1692568670579e00
-.1692568671124e00
-.1692568670990e00
-.1692568670976e00
-.1692568670977e00

® -.5935320573115e-1 .1070783446580e00 -.1692568670977e00
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Table 1.2 The effect of log terms on convergence

of SIF's for a cracked plate, u=-.3, a/h=1

subjected to bending.
closed form closed form numerical

N inz & z21nz Inz Inz & z21nz

10 .747480 .747002 .803520
20 .747475 .747434 .764523
30 .747475 .747473 °748220
40 .747475 .747475 .748087
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Table 1.3 The e_fect of log terms on convergence
of SIF's for a cracked plate, u=-.3, a/h=l

subjected to out-of-plane shear and twisting.

out-of-plane shear twisting

Closed form (t-y)nln(t-y), n_3.
N mode 3 mode 2

10 1.676091 .4656783

20 1.675977 .4656280

30 1.675978 .4656283

40 1.675978 .4656283

Closed form (t-y)nln(t-y), n_2.
N mode 3 mode 2

10 1.676091 .4657690

20 1.675977 .4656276
30 1.675977 .4656284
40 1.675978 .4656283

Closed form (t-y)nln(t-y), n_l.
N mode 3 mode 2

10 1.668236 .4622265
20 1.676051 .4656858
30 1.675995 .4656386
40 1.675984 ,4656324

Closed form In(t-y) only.

mode 3
-.06969634
-.06969737
-.06969736
-.06969736

mode 3

-.06969702
-.06969738
-.06969735

mode 3
-.06976822
-.06969392
-.06969702
-.06969720

N mode 3 mode 2 mode 3
10 1.668817 .4554824 -.06769097
20 1.676039 .4655730 -.06971322
30 1.676022 .4655065 -.06965142
40 1.675970 .4655034 -.06972230

All numerical.

N mode 3 mode 2 mode 3

10 2.846719 1.020734 -.06166954
20 1.594647 .4349318 -.07014928
30 1.654414 .4506305 -.07051167

40 1.660155 .4547331 -.07034780
100 1.662201 .4583573 -.06995209

200 1.666864 .4626725 -.06966782

mode 2

.5218047

.5218052

.5218053

.5218053

mode 2

.5218006

.5218053

.5218052

.5218053

mode 2

.5218403

.5218064

.5218054

.5218053

mode 2
.5221562
.5218015
.5218123
.5218015

mode 2
5240765
5244262
5214280
5215313
5216891
5220058
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APPENDIX J

Asymptotic Analysis of the Shell Infinite Integrals

There are two reasons why the large a behavior of the infinite

integrals must be determined. First the singular behavior of the

integral equation comes from the leading order term in the large a

expansion of the integrand. The second reason is simply for numerical

simplification. The numerical technique used divides the integral

into two parts, 0 < a < A performed numerically, and a > A which is

evaluated in closed form. The more terms in the expansion, the

smaller need be A.

The complication in the integrand is its dependence on the roots

of the quartic polynomial,

4 43

[L

One need only trace through Chapter 5 to see that the kernels in

question are heavily dependent on these roots.

J.l Asymptotic Expansions for the Roots of the Characteristic

Equation

A straightforward asymptotic analysis of the integrands of the

infinite integrals of Chapter 5 would start with the large a expansion

of the roots of Eqn. J.1. They have been found to be
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1 1 1 1 2)'2
Jr

Pl =_ + a4 5 2 2 2 a6 6 2 2 3
(XI-X 2) (X1-X 2)

1 4+3_2X_
+

8 9
a •

+ ..., (J.2)

Pj = a4/3plj + a2/3p2j + PSi + "'" , j = 2,3,4 , (J.3)

where

[1 [1P12 = (_f)113' P13 P12 - 2 + i _ ' P14 = P12 - 2 -

-bp_]

P2j - 3
4Plj+ d

, j=2,3,4 ,

P3j = -

2 2 3
6PljP2j+aPli+2bPljp2j + f

• 3
aPlj+ d

, j=2,3,4 , (J.4)

e = -2X2(X I- X ) , f = (X - ),2)2 (J.5)

By using these roots one can obtain all the quantities found in the

various kernels, for example for large a

D(a) = a43i_k4_2(k 2- k])2 + O(a2) (J.6)

This method is good enough to determine the leading order term but

there is a better way which is shown in section J.2. It is also

useful to have the small a 2 2 2(kl-k2) expansion of the roots of Bqn. J.1.

They are:

Pl,2 = 70 + Z_l * z2_2 + z3_3 + O(z4) '
(J.7)
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2
z z -4+_i 3

- ÷ i---_ +
P3 X22 .oX2 2X2

---_. s _ + u(z ")

Z

P4 - )2

2
iz__z__+ -4-_i 36 "'-"Z_.8 z ÷ O(z4)

_2 2X2

-2-
b_/o+eT/0

' t]l = - 3 2 '
41'/0+3a_'/0+2c70

22 2 2 - - -
670t/1 +3a_'/OT/1+C1'/1+2b70_'/1 +d_70+et/1 +1

72 = - 3 2
470+3a_0+2c70

2 3 3-2 - - -
12707172+47071 +6a707172 +a71 +b_/l+2bflo72+2CTl_2+df11+eft2

f13= - 3 2
4flo+3a_O+2cflo

(j.s)

(J.g)

2 2 2
z = a (_l-X2) ,

= 2_ , = -_ , e = -2 ,

where Pl is obtained from using

corresponds to the minus sign.

the plus sign

(J.10)

(J.li)

for 70 and P2

J.2 Symmetric Asymptotic Analysis

First recall Eqns. 5.39,65,66,67,68,80,81 from Chapter 5.

mj = -(pj+a2) 1/2 j=1,2,3,4

_-_m.K.R.( [¢(1-v)a2+ 1]pj - a2(1-v)} = 0
j:l 3 J J_.

_-_m.K.R.( -1 ) -1
j=l J J 3t _pj = -_ q2(a) '

_m.R. = 0
j=l J J

(J.12)

(J.13)

(J.14)

(J.15)
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o _p.-1

j=lJ J 3

(J.16)

• 1 lira F÷® 2 4-!- m.x
- . a ).R.e J cosa(t-y) da

-fl (y) _ x-_O _0 j=l J
(J.17)

So-X 4 l+v 1in ( _ererX_-_.m.p.K.R. +
l="uf2 (y) - , x*O j=l 3 J _ J

4 m.X

1 _--_.p.K.R. e J
+ j=l J J

Instead of determining

2 4 m.xj
+ a _-_K.R.e __ cosa(t-y) da (3.18)

j=l J ]

the behavior ot the individual quantities of

Eqns. J.17,18, Eqns. J.i3-16 are used to determine the behavior of the

entire sum. First Eqn. J.12 is expanded for large a.

= -(pj+ a2) 1/2 ~ -a[ 1mj

2

}
a2 8 a4 + "" '

-_-a_'_'an(-1)n+l{n--O pja2 }n , an : [1/n2 ] (binomial coef.)
(J. 19)

9.. -9.12

This expansion is valid because (pj/a-) ~ a -'- which goes to zero for

large a. Also the following expression will be needed,

1/2

®

(_1)n+1{ p_..In 2r -_ -a bn a2 ' P - _(1-v)
(J.20)

Note that for either r or mj, the large a and small x behavior of the

exponentials may be simplified as follows,

rx [ { lp__ lp_2 }] -ax (J 21)e ~ exp -ax 1 + _ 2 - 8 4 + "'" ~ e ,
a n
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2

2 o 4 }] oxJ ~ -ax 1 + _ -e

a a

The kernels of gqns. J.17,18 are defined for large a:

2 4

I 1 = Illql(-)/a + I12q2(a)/m = a _.R_ ,
j=!"

4

12 = Ii2q 1(")I" + I22q2Ca)la= -_rT__m.p.K.R.÷
.j=lJIJJ

4 2_K.R..1 _-_.p.K.R. + a
+ l="v j=l J J J j=l J ")

Therefore the following expressions are needed,

4

_Z.
j=l 3 '

4

_K.R.
j=l 3 J '

4

_p.K.R.
J:=1 J 3 3 '

4

7_.m.p.K.R.
j=l_J3J

From Eqns. J.13-16, Eqn. J.28 can be easily determined,

4

_-_m.p.K.R. = ia(1-_)q2(a)
j=l_JJJ

Also from these equations we can write

4 i

_.m.K.R. = ia_(1-v)q2(a) + aq2(a) ,
j=lJ J J

(J.22)

(J.23)

(J.24)

(J.25)

(J.26)

(J.27)

(J.28)

(J.29)

(J.3O)
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4 2
_.s.p.R. = .k2 1_ -- _q2(a) + iaql(a )
j-l J J J ik2

(J.31)

Next express Kj in terms of pj. The characteristic equation, J.1 is

first used to write

4 2 2 2 2 2 2 2a4
1 k 2 2k 2 (A2-X1) a (k2-kl)

-- + + (J.32)

K. can then be written as
J

22

K. = pjX
j 22 22

(mjk2-Xla) (_pj-l)

X2
-222 {_+

. (x2-x i)
tA2-^l) a ) X

2A_ ..2 .... 4

PJ PJ :i

® n x2X _(-I) n 6 n , 6- 2 2
n--v a k2-k I

(J.33)

This expression is used to obtain

4
2-.t_"x-_---.: 2 2 2 2 4 -2 + X2X2 4X_P-1R.^Z_
j=l J 3 a ), (X2-X1)_p j Rj zJ=1 J J ,

(J.34)

4

_'_p.K.R. = a2k2(k_-X_)¢--"_p':IR. + k2k 2'_
j=l J J a j=1 J 3 2j=IRj

@ (J.35)

Therefore we can find all that is needed (Eqns. J.25-27), if the

following three sumsare known,

4

j_lpjlRj
, i=O, 1,2 (J.36)
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In a similar way in which Eqns. 3.34,35 were found, it may also be

shown that

4 1
= 2 2 2 q2 (a)

j=1 , ax (x2-x I)

, (J.37)

4 2 (a)( ! _(l-v) +
j=lj j _ a

1 1 (1-y)_2

+ _ [ k2 2 2 2 2 2 2 ] ) (J.38)
(X2-X 1) k (X2-X 1)

From Eqns. 3.15,31,37,38, the characteristic equation, J.1 can be used

to determine

4

 Cp".m.R.
j=l J J J '

for any n because

values of the integer n.

(J.39)

these four equations represent four consecutive

By making use of Eqn. J.19, Eqn. J.39 can be

converted into

4

j:IJ J

for any n,

algebra, the

(J.40)

in particular n = 0,-1,-2, see Eqn. J.36. This involves

amount of which is determined by how many terms in the

expansion are desired. The result is

,. a 5x_".11 - (2k-1)

Ill - _ + k__2=lP2k_la -+ O(a -11)
, (J.41)

.12 - (2k-1)

I12-_ k__2=lP2k_la + O(a -11) ,
(J.42)
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6__ .21 - (2k-1)

I21 -_ k_Z_lP2k_lU + O(u -13) ,
(J.43)

I22 " -_(l+v) + _A22 -(2k-1)
- _r2k_ 1- +

m

+ _.a-(2k-1) _(l-V)ak+ l(-1)kp k+l + O(a -13)
k---7

(J.44)

where,

p]l [ 235+ _ _7X2_ 3 ,X_]= L-_7 _

2k+l
11

P2k-I = _"
j=l

(-1) k+j-172k+l- j Q1 (k, j) c(3k+2-j) , k = 1,...,5

_ [ t5 ' "" 2"3 "• __]21 _TL_._(I_v) - _J+_2L_(I_v) - _JJ
_2

2k k+j+l 2k-"

_2k-112 _ _21 j=l_'(-l) 7 3q2(k,j)d(3k+l:J)
, k = 1,...p5 ,

I [ 1 [lx2 s 2ti_L_ 2- _I 5= + 16--7 - 8_'2] '

21- = _2 _1(_1)k+j72k+1-JO.,1(k,j)[[1_.__ v +_22]c(3k+3_j) _P2k+l
j=l

2

- vl-'-''2.c(3k+2-j) - 7c(3k+4-j) I., , k = 1,...,5 ,

22 -1

-_v" - 2_(1-v) '

22 =
_2k+1 (_ (l-v) ak+2 (-1) k+lpk+2

2k

+ _"_+(-l)k+J72k-JQ2(k,j ) x
j=l

X [[1--'-_ +)_2] d(3k+2-j)- _,2 d(3k+l-J)-Td(3k+3-J)]l k=l ,5
"_ , IP*'* ,

(J.45)
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where

2 2
(X2-Xl) ,

n-I

Co = 1 , c I = a I , c n = a n + i__._lan_iCi ,

d o = c (l-v)= (l-v) , d n n - Cn-i '

ql q1(1'2)=2 x2' Ql(l'S)= x4'

q1(2,1)=_2, q1(2,2)---4_2X2,

Q1 (2'5)=X_ (_2)_4-1) '

QI (3,1) =3, ql (3,2) =6_3), 2,

QI (3,4)=_)2 (20_2) 4_8),

QI (3' 6) =_)_26( 6_2_4-8),

ql (4, I) =4, i_I (4,2) =8_4)_ 2,

_1 (2,3)=6_2X4-1,

(J.46)

(J.47)

(J.48)

I_1 (2,4)=)_2 (4_2X_-2),

ql (3,3) =¢ (15_2X4-2),

Q1 (3 ' 5) =')'4 (15_2)'4-12) '

=_X2 (_ X2-2),q1(3'7) 8 2 4

{_1(4,3) =2 (28_2) 4_3),

q1(4'4)=_'2)_ (56_'2)_4-18) ' Q1{4'5)={70_4)_8-45"2)_4+1)'

4 48 24
Q1 (4'6)=X2(56_4)_82-60_2)_4+4)' _1 (4'7)=_2(28_ _'2-45_ )'2+6)'

qI(4'8):)'6(8"4)'8-18_'2)'4+4)' Q1(4'9):)_28('4xS-3"2X4+1)'

QI (5'1)=_5' Q1(5'2)=10_5_2' q1(5'3)=_3 (45_2_4-4)"

ql (5'4)=_3)_2(120_2)_4-32)' _i(5'5)=_(210_4)_8-112_2_4+3)'

2 48 24
Ql(5,6)=_;X2(252_ _2-224_ )_2+18),
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I_2(1,1)=I,

{_1(5,7)=r.,), 4 (210K;4k8-280r..2k_+45) ,

0.,1(5,8) =r..),6 (120,4),8-224_,2),4+ 60) ,

0,1(5,9) =_;)_8(45r.4),8-112r.2),,_+45),

i0 48 24
QI(5,10)=_),2 (i0_),2-32_ ),2+18),

12 48 24
ql(5,11)=_, 2 (_ X2-4_ ),2+3),

Q2(i, 2)=x22,

_2(2,1)=', q2(2,2)=3'),2, 1_2(2,3)=3_X4, Q2(2,4)=_;),6,

¢_ o c) O A

Q2(3,1)=_'_, Q2(3,2)=5_"),_, Q2(3,3):(10_")_-1),

0,2 (3,4):),2 (I0_,2)_-3), Q2 (3, 5) :),.4 (5_.2),4-3),

Q2 (3,6) =)_26(r.2)_4-1),

q2(4,1)=_3, I_2(4,2)=7_3),2,+, q,_(4,3)=_(21_2)'4-2),+, _.

q2 (4,4)=m)_2 (35m2),4-10), _2 (4,5) =+),4 (35_;2),4-20),

Q2 (4,6)=_),6 (21,2)_4-20), {_2(4,7) :+)_28 (7+2),4-10),

0,2 (4,8) =_;_X10 (r,.2),4-2),

Q2(5,1)=,4, _2(5,2)=91c4),_, O.,2(5,3)=K.2(36r..2X4-3),

,2 (5,4):r..2X22 (84r.,2)_4-21), Q2 (5,5): (126r.,4),28-63,2).4+ I),

I_2(5,6) =),.2 (126r.,4_8-105r.,2X4+5),

_+

_
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{_2(5,7) =)_4 (84_4),8-105_2X4+ 10),

Q2 (5,8)=)_26 (36_4),8-63_;2),4+ 101,

{_2(5,9) =),8 (9_4),8-21_2),4+ 5),

10)__)120 as 24Q2(5, (_ X2-3_ ),2+1) (3.49)

As mentioned at the beginning of this appendix, the infinite

integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,

hlij cosa (t-y) da i,j=l,2 (J.50)

This integral for I.. of the form given by Eqns. J.41-44 is evaluated
x3

in section J.4 of this appendix. The following expressions are used

in Eqns. 5.84,85.

5

Ilj = _-_fllJ-I (-1)n (t-y)2n-21n[t-Y[ +
n=2 (2n-2) !

5 1_ n+l (t-y) 2n-2 _ lj+_-_fl _1(_1) (2n_2) v Fc(1)+ fl _lFc(2n-1) , j=l,2 , (J.51)
n=l

- _ .21 (t-Y)(2n_2)2n-21"! I t-vI21 = n=2P2n_l(-1)n .... ,I +

_-_ .21 n+l (t-y)2n-2fc n:_:2 -+ n=_P2n-1 (-1) (2n-2)! (1)+ fl21n_lFc(2n-1 ) , (J.52)

- [6x_ .22 ®
= _-':.pn+l n n (t-y) 2n-2-,

I22 _,n___P2n_l+_(1-v ) (-1) an+l}(-1) (2n-2)! ±nlt-yl +
n=7

{8x-_22 " n+l n

n__2=lP2n_l+,(1-u ) _--:_p (-1) an+l)(-1) n+l (t-y)2n-2p (1, ++ - (2n-2) ! -c ''j
n=7
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g__2_222 ® n.l n -
+ n_l+_(l-u) _-_p (-i) an+l)Fc(2n-l)

n=7

(J.53)

J.3 Skew-Symmetric Asymptotic Analysis

The same procedure that was used in section J.2 is used here.

The necessary equations are 5.93-96,106-108, which are repeated below,

1 4
T/_pjKjRj = qB(a) ,

jl

(j.s4)

4

_-'.R. =0
]=1 J

_=I J J "_4_' ,

4 i

_.RIK_ (_pj-1) = aq3(a) ,
i=1J ,

liraf+'( .:_!1 _'_(m2-ua2)K.R.erX +
_f3(y ) = 1 x+O )_.Lr(1-u)j= 1 J J J

(j.55)

(J.56)

(J.57)

4 m.x

+ _-_m.p.K.R.(a)e 3 ) e-iaY da ,
_=IJJ J J

(J.58)

,+® 4 m.x •

lira J a_-_m.R.(a)e 3 e-laY da ,
-f4 (y) = _-_ x*O _® _=1 3 3

,+®. 4 [_erX(a2+r 2) (m2_ua2)
-2X4f . , l+u lira ] ®_._IKjRjt iar(1-u)

5ty/ - 2f x*O _ j=

(j.5o)

Eqns. J.19-22 are

2iamjemjXl} e-lay daI

again used. The kernels

(J.SO)

in Eqns. J.58-60 are

defined as follows for large a,
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13 = I33q3(o)/a + I34q4(a)/" + I35qs(O)/a =

4 24 4

_-_p.K.R. - K.R _-'m;p;K;R_ (a)
r(l-v)j=l j j j r j=l J j j=l J J _ _

14 = I43q3(a)/a + I44q4(a)/a + I45q5(a)/a =

4

= i=_=.R. (,,)
j=iJ J

15 = Is3q3(a)/= * I54q4(a)/a * I55qs(a)la =

•

= _.K.R. [- (a2+r2) p - =(a2*r2) 2iam.]
j j Liar(I-u) j ir jj=l

From Eqns. J.54-57 we find:

Ap.2R. = q5(a){ _(1-_)22 2 2
j=l J J a X (X2-_l)

2(1-u )t2

a4X2 (X22-X2)2)-

i

-qs(a)asx2 2 2 '
(),2-),1)

lR. (1-v)q5Ca): _7__ '
j:l J J a k (X2-Xl)

4

j___IRj= 0 ,

4

j___IPjRj = q4(a)

Combined with Eqn. J.l the following may be determined,

4
n

_.p.R.
j=l J J '

(J.61)

(J.62)

(J.63)

(J.64)

(J.S5)

(J.66)

(J.67)

(J.68)
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for any n from which all of the expressions in Eqns. J.fil-63 may be

obtained to any order of a. The result is:

•4x_ .33 - (2k-1) _ (_l)k(p/a2)kek 0 (a-9)
I33-- -ia + ik__2=lP2k_la -iak=5 +

(J.60)

~ 211 2 2 12] k4___1_2_a-(2k)+ O(a-lO)134- eX _(X2-_1)- _X2 +
(5.7o)

_35 -(2k) ®
~ + _-_.(_l)k(p/a2)k[ek-2ek+l ] + O(a -10) , (J.71)

I35- _ r2k" k=5

2 2

(X2-X1) ,_A34.- (2k) O(a -8) (J.72)
I43 -" i + _ + ,8X2 _=-_r2k"

~ -a _ .44 -(2k-1)

I44 - _ + k__k_lP2k_la + O(a -9)

4.45 - (2k-1)

145 -" k__2=lP2k_la + O(a -9)

(J.73)

(J.74)

k3=_i_3 - .
153 ._ ka-(2k)+ a2_"(_l)k(p/a2)k[ek_l_2ek] + O(a -8) , (J.75)

k=5

• 4x__54 -(2k-1)

I54 ~ lk__._lP2k_la + O(a -9) ,
(J.76)

• 4_-,_55 --(2k "_1) -

155 _ -ia(l+v) + Ik=Z_lP2k_la -

- £a_(-1) k+l(p/a2)k[ek_l-4ek+4ek+l ] + O(a-9) ,
k=5

(J.77)

where

33 1 _ , _4 4
Pl - + ,o tx2-XlJ '
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33
P3 --

_-

6 4 22 3

6 24
3 [a4X2 (_ A2_ i) __5X_7 (5_2X4_3) +a6k2272 (10_2)`4.3) -P e3+_'7

-a773 (I0_2),4-1) +a85_2),274-a9 _275] ,

= -p4e4+_ 7p_3 [.a5_klO (_2X4_2) +a6_k87 (7_2)`4_ 10 ) _

_ a7_)`6272 (212)4_20)+a8_)473 (352)4_20) _a9K;),2724(35_ 24),2_10 ) +

5(21_2X42_2) . 3.26 37]+alO_ 7 -all t_ ^27 +a12_ 7 J ,

24 =

34
P4

6 4 22 3
_X21a2_X2-a33_7X2+a43_27 -a5_7 ] ,

6 24
eX2[_a3)`2( _ X2_1 ) 4 2 4 _a5X2272(lO_2)`4_3)+= +a47),2 (5_),2-3) -

+a673(i0_;2)4_i) . 2.24 25]-a7o_ ^27 +a8_ 7 J ,

2 10 24
34 _), [a4_), 2 (, X2_2)_as,),87(7_2X4_lO) 62 24_6 = +a6_),27 (21_),2-20)-

43 24 24 24 5(21_2),42.2)+-a7_X27 (35_)`2-20)+a8_),2'_ (35_;).2-I0)-a9_/

32 3771 ,+a107_ ),276-all _

]_4 = _), 2 [_ asX210 (_ 4 X2_3_8 2 ),2+ 1) +a67X.2(9_4 8 4 X2_21_8 2)`2+5)_4-- - _

62 48 24 34 48 24+10) -
-a7)`27 (36_)`2-63_ ),2+10)+a87 X2(84_ ),2 -105_ )`2

44 4 S 24 5(126_4)`8_63_;2)`4+1)_-a9),27 (126_),2-105_ X2+5)+a107

• 226 24 (36_2)`4_3)_a139_4)`278+a14_479]-all z ),27 (84_),2-21)+a12_277
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= 4 2 2
_35 _P(el_2e2)+_(l_v ) [_a2),2+a32),27_a47 I '

35 8 6 42 23 4
P4 --2Ce_,2es)+_(l__)[_S_)`2__44_X27+.SS_)`2V_a64_)`27+_7_7 ],

8 24 6 24
p635 = _p3(e3_2e4)+&(1_v)[_a4),2(_; ),2_l)+a5),27(6& ),2_4) -

• 4 2 2 4 2 3 2 4 _a874(15_2)`4_1)+-a6),27 (15& )`2-6) +s7)`27 (20&)`2-4)

+ag6_2).275-a10.276] ,

2 5 2 4 6 2 4 ^ 3.2 7 3 8]
-alO_)`27 (56&)`2-12)+a11_7 (28&)`2-2)-a12_ ^27 +a13& 7 J ,

P2 -- .

= 4 2 4 2 2 4 2(6_2),4_1 )p44s (7IX2)[_4)`2(_x2-_)-=52)`27C2,x2-1)+,_6v

• 2.23 24]
-a74_ ^27 +a8_ 7 J ,

23 24 4 24 325 36
+a8_)`27 (20_)`2-8)-a9_7 (15_)`2-2)+a106_ )`27 -all• 7 ]

5 2 2 2 1.2.2]p_4 __._ 7._.iCX2_Xl)+ _^1^2J ,

_44 4 2 4 2 2 4 2 2 4= -s.3),,_(_; ),2-1)+a4),27(4_; ),2-2)-a57 (6_),2-1)+

+s.64_;2),2273-a7_274 .
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44 8 24 6 24 42 24
_5 = a4_X2(_ X2-2 )-aS_X27C6_ X2-8)+a6_),27 (15_ X2-12 )-

_a72_)`273(i02X4_4),a8_74(152)142)_a9o_^ 3.25^27 "alO _367

p_4 848 24 6 48 24= +a6X27(8_ X2-18_ X2+4)--as),2(& )<2-3& )12+1)

42 48 24 23 48 24
-a7),27 (286)`2-45_ ),2+6)+a8),27 (56_)`2-60_ ),2+4) -

_all 276(28 2)4_3 ) ^ 4.27 48+a12 tl_ A27 -a13 _ 7 ,

22
)_2+),i

s = -(l-v)
16)12 '

= 2 6 4 22 3
p45 (l_v)/_ [a3_)`2_a43_27+a53_27 _a6_7 ] ,

= 2 6 24 4
p_5 el-v)/)` [-a4)`2(_ ),2-1)÷as)`27(S_2)`_-3)-a6)`_72(lO_'2)`24-3)÷

+a773 (10 2) 42_1) . 2.24 25]-a8i_ A27 +all _ 7 J ,

i_45= (1_,)/)`2 [ a5r,,) 10 (112)14_2) 8 24 62 24-a6),2_7(7_ ),2-i0)+a7_),27 (21_ X2-20 )-

4 3(35r2),4_20) 2 4 2 4 _alOr,,75(21r,2)4_2)+-a8),2_;7 +a9_),27 C351c ),2-10)

_3.26 371
+allI_ ^27 -a12_ 7 J ,

53
P4

p2 (e1-2e2) -27 [a3),2-a47 ] ,

6 4 22 3
=-p3(e2-2e3)-27[-a4_X2+a53_X27-a63_27 +a7_7 I
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53 4 6 2 4
_6 = p (e3-2e4)-27I aSX2(_ >,2_i) _a6)_274 (5_2X2-3)4 +a7),2722(i0_2)43)_

24 224 25
3(10_ k2-1)+a95_ )'27 -alO _ 7 ]-a87

p53 = _p 5 (e4_2e5) _27 [_ a6D,210 (_;2 ),2_2)4 +a7 _),27 (7_8 2 ),2_ 10)4 _

62 24 +a9_)473 24 24 24-a8_),27 (21_),2-20) (35_),2-20)-ai0_),27 (35_),2-10)+

+ali_75(21 2X4_2)_ . 3.2 6 3 7]-a12 i_ ^27 +a13_ 7 J ,

pl 4 -X2 )'22+)'2

_54 = 2),2"[a3_.),2-a43,)_27+a53_),2764 22_a.6,73"J '

2)2I_a4)6(2)4 i)+a5)47(52>4_3)_ - - - - 2 2 24p545 = -a6)_27 (10_),2-3)+

3
(I 02)_4_ I) -a852),-_74+ a9275J+a77

A54 2)2[a_.,..klO( 2>4 2)_ao.¢.187(7._2.14_10)._ _6 2q-. 2.4 ....,
r7 = L a z _ o _ _ _7._..27 _zl_ ^2-zu]-

4 3 2 4 2 4(35_2)__i0)_ai0,75(21,2)_4_2)+-a8_k27 (35_)_2-20)+a9_27

+a117_3)_276-a12_377] ,

]_5 -1- '

= 4 2 2
p55 p2 (el_4e2+4e3) +2 (i__,) [_a3),2+a42),27_a57 ]

= 8 6 42
p55 _p3 (e2_4e3+4e4)+2(1-v)[a4,X2-as4,)_27+a66_)_27 -
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The

Other constants that are introduced are:

23 4
-a74_A27 +a8_7 ] ,

55 8 2 4
#7 = p4(e3_4e4+4e5)÷2(l_u ) [_a5_2(_ _2_1 ) +a6X276 (6_2X2-4)4 _

4 2 2 4 2 3 2 4 4(15_2_4_1)+-a7_27 (15_ X2-g)+a8X27 (20_ X2-4)-a97

225 26
+a106_ _27 -all _ 7 ]

constants defined in section J.2

,-,: _[:-..,,c6,]-lj .

CJ.78)

also apply to this section.

m n

1 1 OnC_, n[) 2r -_ _ P-- (J.Tg)
n=O a2 ' # - _(i-_)

As mentioned at the beginning of this appendix, the infinite

integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,

w

Alijcosa(t-y)da , i=3, j=3; i=4,5, j=4,5 ,

(J.80)®I
A ijsina(t-y)da i=3, j:4,5; i=4,5, j:3

This integral for I.. of the form given by Eqns. J.61-63 is evaluated
1j

in section J.4. The following expressions are used in Eqns. 5.109-

- _ [ 33 + 2 34 ®'_3-V_t_o, ¢_/_p_o_]+_e°¢'_°¢}_

X{(_l)n (t-Y)2n-2 }(2n-2)! lnlt-yl + Fc(2n-1) +

III.
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4 m

: - -2 + (-1) np x

n+l_F - - ,
X(-1) (2n-2) ! c (1) (J.81)

4 2n-1

- = _f"s34[t-1 _n+l(t-y) F ,1_ - ._{ l_n[t-Y) 2n-1 t_yl] ]I34 n___r2nt_ J (2n-l)! c t'j+F (2n) lnls -_-'# (2n-l) !

(J.82)

n=l n-5

x(<-'>°-%'>-377',o,<-,,-n+' "
I +Fs(2n) + (-I) (2n-l)! Fc(I/J '

(J.SS)

3 43 2 44 .

X {(-1) n (t-Y) 2n-1(2n-1)i Inlt-yl + Fs(2n) + (-1)n+l (t-yj2n-1F {1_
• (2n-l) ! ct J]

(J.84)

I43 = n=2_-_fl4J-l{(-1)n (t2nY);"i'lnl(_ ). t-yl + Fc(2n-1)} +

4 n+l (t-y)2n-2 F ,
+ n=_1_24_-1(-I) (2n-2)! c (1) j=4,5

I53 = 82n- -1 + (-1)npn(e 1---2en) X
= n=5 -

, (J.85)

x {(-I) n (t-y)2n-11nlt_yl+_s(2n) + (_1)n+1
(2n-l) ! (t-Y) 2n-1 (1)}(2n-l) ! Fc '

(7.80)

- X_-_/_54 IF {2n 1_+{ 1,n(t-Y) 2n-2 t-yi}I54 = n___r2n_lt c < - _ _- s (2n-2)! lnl +
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_-_54 (t-y) 2n-2
+ n___P2n-1 (-1)n÷1 (2n-2)! Fc(1) '

(J.87)

- [ .ss "
I55 = [n=_p2n-l= +n=5Z(-1) n#n (en_l-4en+4en+l))

n (t-y) 2n-2 t-y I }x {Fc(2n-1)+(-1) (2n-2)! inl +

. . "
Z(-1)npn(en_l-4en+4en+l )} (-1)n+l(t-y)2n-2_ "'

[n=_P2n-l= n=5 (2n-2) ! "c _;

(J.88)

J.4 Integrals From A to Infini W

We need expressions for

®cosa(t-y) da (J.89)

A a2n-I

f®sina(t-y) da A>O, n>O (J.90)

JA a 2n

These integrals come from the large a expansion of the Fredholm

kernels. Note that for n>O the limit for x*O has been taken under the

integral sign. The n--O cases of Eqns. J.8g,90, for which the limit

must be taken after integration, are respectively demonstrated below,

x+O ae cosa(t-y) da- (J.gi)
(t_y)2 '

lim;: 1x+O e-aXsina(t-y) da - (J.92)t-y
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The 1/a case of gqn. J.89 has a log singularity, the 1/a 2 term of J.90

becomes (t-y)init-y[ and so on. This is shown in the general

expressions presented below:

®cosa(t-y) da = Fc(2n-1) + (-1)n+l (t-y)2n-2
A a2n-1 (2n-2)! Fc(1) +

(t-y) 2n-2. ,. ,
+ (-1)n (2n-2)! znl_,-yl , (J.gS)

[®sina(t-y) da = F (2n) + (-1)n+l (t-y)2n-l_
JA a2n s (2n-l) ! "c (I) +

+ (-1)n (t-y)2n-1- ,
(2n-1)! inlt-yl ,

(J.94)

where

[A[t-Y[cosx -I

Fc(1) = -Te - in(A) - #0 _ dx ,
(J.95)

n-1

Fc(2n-1) = _(-1) j+l
j=l

(t-y)2j-2(2n-l-2j)! cosA(t-y) +

(2n-2) !A2n-2j

n-1
+ _.(-1) j (t-y)2j-l(2n-2-2j)! sivA(t-y)

j=l (2n-2) [k2n-2j-1

(J.0S)

j_l (t-y)2j-2(2n-2j)! sivA(t-y) +
(2n) (-1)j+l

Fs = "= (2n-1) [A2n-2j+l

n-1 +1 (t-y)2j-! (2n-1-2j) I
+ _ (-I)j " cosA(t-y)

j=l (2n-1) !A2n-2j
(J.97)

The constant in Eqn. J.95 is Euler's constant, 7e =.57721566490153.

This expression is a cosine integral, Ci[A[t-y[], with the log term

taken out.
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